Author

# Stephen G. West

Other affiliations: Emory University, Northwestern University, University of Texas at Austin ...read more

Bio: Stephen G. West is an academic researcher from Arizona State University. The author has contributed to research in topics: Personality & Regression analysis. The author has an hindex of 78, co-authored 220 publications receiving 95169 citations. Previous affiliations of Stephen G. West include Emory University & Northwestern University.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1975

TL;DR: In this article, the Mathematical Basis for Multiple Regression/Correlation and Identification of the Inverse Matrix Elements is presented. But it does not address the problem of missing data.

Abstract: Contents: Preface. Introduction. Bivariate Correlation and Regression. Multiple Regression/Correlation With Two or More Independent Variables. Data Visualization, Exploration, and Assumption Checking: Diagnosing and Solving Regression Problems I. Data-Analytic Strategies Using Multiple Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and Transformations. Interactions Among Continuous Variables. Categorical or Nominal Independent Variables. Interactions With Categorical Variables. Outliers and Multicollinearity: Diagnosing and Solving Regression Problems II. Missing Data. Multiple Regression/Correlation and Causal Models. Alternative Regression Models: Logistic, Poisson Regression, and the Generalized Linear Model. Random Coefficient Regression and Multilevel Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set Correlation. Appendices: The Mathematical Basis for Multiple Regression/Correlation and Identification of the Inverse Matrix Elements. Determination of the Inverse Matrix and Applications Thereof.

29,764 citations

•

01 Jan 1991TL;DR: In this article, the effects of predictor scaling on the coefficients of regression equations are investigated. But, they focus mainly on the effect of predictors scaling on coefficients of regressions.

Abstract: Introduction Interactions between Continuous Predictors in Multiple Regression The Effects of Predictor Scaling on Coefficients of Regression Equations Testing and Probing Three-Way Interactions Structuring Regression Equations to Reflect Higher Order Relationships Model and Effect Testing with Higher Order Terms Interactions between Categorical and Continuous Variables Reliability and Statistical Power Conclusion Some Contrasts Between ANOVA and MR in Practice

27,897 citations

••

TL;DR: A Monte Carlo study compared 14 methods to test the statistical significance of the intervening variable effect and found two methods based on the distribution of the product and 2 difference-in-coefficients methods have the most accurate Type I error rates and greatest statistical power.

Abstract: A Monte Carlo study compared 14 methods to test the statistical significance of the intervening variable effect. An intervening variable (mediator) transmits the effect of an independent variable to a dependent variable. The commonly used R. M. Baron and D. A. Kenny (1986) approach has low statistical power. Two methods based on the distribution of the product and 2 difference-in-coefficients methods have the most accurate Type I error rates and greatest statistical power except in 1 important case in which Type I error rates are too high. The best balance of Type I error and statistical power across all cases is the test of the joint significance of the two effects comprising the intervening variable effect.

8,629 citations

••

TL;DR: In this paper, Monte Carlo simulations were used to investigate the performance of three X 2 test statistics in confirmatory factor analysis (CFA): Normal theory maximum likelihood )~2 (ML), Browne's asymptotic distribution free X 2 (ADF), and the Satorra-Bentler rescaled X 2(SB) under varying conditions of sample size, model specification, and multivariate distribution.

Abstract: Monte Carlo computer simulations were used to investigate the performance of three X 2 test statistics in confirmatory factor analysis (CFA). Normal theory maximum likelihood )~2 (ML), Browne's asymptotic distribution free X 2 (ADF), and the Satorra-Bentler rescaled X 2 (SB) were examined under varying conditions of sample size, model specification, and multivariate distribution. For properly specified models, ML and SB showed no evidence of bias under normal distributions across all sample sizes, whereas ADF was biased at all but the largest sample sizes. ML was increasingly overestimated with increasing nonnormality, but both SB (at all sample sizes) and ADF (only at large sample sizes) showed no evidence of bias. For misspecified models, ML was again inflated with increasing nonnormality, but both SB and ADF were underestimated with increasing nonnormality. It appears that the power of the SB and ADF test statistics to detect a model misspecification is attenuated given nonnormally distributed data.

4,168 citations

01 Jan 1995

2,804 citations

##### Cited by

More filters

••

TL;DR: This article seeks to make theorists and researchers aware of the importance of not using the terms moderator and mediator interchangeably by carefully elaborating the many ways in which moderators and mediators differ, and delineates the conceptual and strategic implications of making use of such distinctions with regard to a wide range of phenomena.

Abstract: In this article, we attempt to distinguish between the properties of moderator and mediator variables at a number of levels. First, we seek to make theorists and researchers aware of the importance of not using the terms moderator and mediator interchangeably by carefully elaborating, both conceptually and strategically, the many ways in which moderators and mediators differ. We then go beyond this largely pedagogical function and delineate the conceptual and strategic implications of making use of such distinctions with regard to a wide range of phenomena, including control and stress, attitudes, and personality traits. We also provide a specific compendium of analytic procedures appropriate for making the most effective use of the moderator and mediator distinction, both separately and in terms of a broader causal system that includes both moderators and mediators.

80,095 citations

••

TL;DR: In this article, the adequacy of the conventional cutoff criteria and several new alternatives for various fit indexes used to evaluate model fit in practice were examined, and the results suggest that, for the ML method, a cutoff value close to.95 for TLI, BL89, CFI, RNI, and G...

Abstract: This article examines the adequacy of the “rules of thumb” conventional cutoff criteria and several new alternatives for various fit indexes used to evaluate model fit in practice. Using a 2‐index presentation strategy, which includes using the maximum likelihood (ML)‐based standardized root mean squared residual (SRMR) and supplementing it with either Tucker‐Lewis Index (TLI), Bollen's (1989) Fit Index (BL89), Relative Noncentrality Index (RNI), Comparative Fit Index (CFI), Gamma Hat, McDonald's Centrality Index (Mc), or root mean squared error of approximation (RMSEA), various combinations of cutoff values from selected ranges of cutoff criteria for the ML‐based SRMR and a given supplemental fit index were used to calculate rejection rates for various types of true‐population and misspecified models; that is, models with misspecified factor covariance(s) and models with misspecified factor loading(s). The results suggest that, for the ML method, a cutoff value close to .95 for TLI, BL89, CFI, RNI, and G...

76,383 citations

01 Jan 1989

TL;DR: Regression analyses suggest that perceived ease of use may actually be a causal antecdent to perceived usefulness, as opposed to a parallel, direct determinant of system usage.

40,975 citations

••

TL;DR: The Unified Theory of Acceptance and Use of Technology (UTAUT) as mentioned in this paper is a unified model that integrates elements across the eight models, and empirically validate the unified model.

Abstract: Information technology (IT) acceptance research has yielded many competing models, each with different sets of acceptance determinants. In this paper, we (1) review user acceptance literature and discuss eight prominent models, (2) empirically compare the eight models and their extensions, (3) formulate a unified model that integrates elements across the eight models, and (4) empirically validate the unified model. The eight models reviewed are the theory of reasoned action, the technology acceptance model, the motivational model, the theory of planned behavior, a model combining the technology acceptance model and the theory of planned behavior, the model of PC utilization, the innovation diffusion theory, and the social cognitive theory. Using data from four organizations over a six-month period with three points of measurement, the eight models explained between 17 percent and 53 percent of the variance in user intentions to use information technology. Next, a unified model, called the Unified Theory of Acceptance and Use of Technology (UTAUT), was formulated, with four core determinants of intention and usage, and up to four moderators of key relationships. UTAUT was then tested using the original data and found to outperform the eight individual models (adjusted R2 of 69 percent). UTAUT was then confirmed with data from two new organizations with similar results (adjusted R2 of 70 percent). UTAUT thus provides a useful tool for managers needing to assess the likelihood of success for new technology introductions and helps them understand the drivers of acceptance in order to proactively design interventions (including training, marketing, etc.) targeted at populations of users that may be less inclined to adopt and use new systems. The paper also makes several recommendations for future research including developing a deeper understanding of the dynamic influences studied here, refining measurement of the core constructs used in UTAUT, and understanding the organizational outcomes associated with new technology use.

27,798 citations

••

TL;DR: An overview of simple and multiple mediation is provided and three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model are explored.

Abstract: Hypotheses involving mediation are common in the behavioral sciences. Mediation exists when a predictor affects a dependent variable indirectly through at least one intervening variable, or mediator. Methods to assess mediation involving multiple simultaneous mediators have received little attention in the methodological literature despite a clear need. We provide an overview of simple and multiple mediation and explore three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model. We present an illustrative example, assessing and contrasting potential mediators of the relationship between the helpfulness of socialization agents and job satisfaction. We also provide SAS and SPSS macros, as well as Mplus and LISREL syntax, to facilitate the use of these methods in applications.

25,799 citations