scispace - formally typeset
Search or ask a question
Author

Stephen J. Fairweather

Bio: Stephen J. Fairweather is an academic researcher from Australian National University. The author has contributed to research in topics: Amino acid & Amino acid transporter. The author has an hindex of 10, co-authored 17 publications receiving 361 citations.

Papers
More filters
OtherDOI
TL;DR: Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology and can now be explained as differences of amino acid transporter distribution along the intestine.
Abstract: The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.

101 citations

Journal ArticleDOI
TL;DR: A new group of ASCT2 inhibitors, 2-amino-4-bis(aryloxybenzyl)aminobutanoic acids (AABA), were developed recently and shown to suppress tumor growth in preclinical in vivo models, and may be explained by a significant disruption of AA homeostasis.
Abstract: The glutamine transporter ASCT2 (SLC1A5) is actively investigated as an oncological target, but the field lacks efficient ASCT2 inhibitors. A new group of ASCT2 inhibitors, 2-Amino-4-bis(aryloxybenzyl)aminobutanoic acids (AABA) were developed recently and shown to suppress tumor growth in preclinical in vivo models. To test its specificity, we deleted ASCT2 in two human cancer cell lines. Surprisingly, growth of parental and ASCT2-knockout cells was equally sensitive to AABA compounds. AABA compounds inhibited glutamine transport in cells lacking ASCT2, but not in parental cells. Deletion of ASCT2 and amino acid depletion induced expression of SNAT2 (SLC38A2), the activity of which was inhibited by AABA compounds. They also potently inhibited isoleucine uptake via LAT1 (SLC7A5), a transporter that is upregulated in cancer cells together with ASCT2. Inhibition of SNAT2 and LAT1 was confirmed by recombinant expression in Xenopus laevis oocytes. The reported reduction of tumor growth in pre-clinical models may be explained by a significant disruption of amino acid homeostasis.

72 citations

Journal ArticleDOI
TL;DR: Evidence is provided for the existence of B0AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney.
Abstract: The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B0AT1 [broad neutral (0) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B0AT1 and B0AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B0AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B0AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (Vmax). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B0AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B0AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney.

64 citations

Journal ArticleDOI
TL;DR: It is demonstrated that members of an apicomplexan-specific protein family—the Novel Putative Transporters (NPTs)—play key roles in the uptake of cationic amino acids.
Abstract: Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family-the Novel Putative Transporters (NPTs)-play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites.

56 citations

Journal ArticleDOI
TL;DR: Tools to identify and evaluate novel inhibitors of B0AT1, the neutral amino acid transporter that mediates the Na+‐dependent uptake of all neutral amino acids, are established.
Abstract: Background and Purpose The neutral amino acid transporter B0AT1 (SLC6A19) has recently been identified as a possible target to treat type 2 diabetes and related disorders. B0AT1 mediates the Na+-dependent uptake of all neutral amino acids. For surface expression and catalytic activity, B0AT1 requires coexpression of collectrin (TMEM27). In this study, we established tools to identify and evaluate novel inhibitors of B0AT1. Experimental Approach A CHO-based cell line was generated, stably expressing collectrin and B0AT1. Using this cell line, a high-throughput screening assay was developed, which uses a fluorescent dye to detect depolarisation of the cell membrane during amino acid uptake via B0AT1. In parallel to these functional assays, we ran a computational compound screen using AutoDock4 and a homology model of B0AT1 based on the high-resolution structure of the highly homologous Drosophila dopamine transporter. Key Results We characterized a series of novel inhibitors of the B0AT1 transporter. Benztropine was identified as a competitive inhibitor of the transporter showing an IC50 of 44 ± 9 μM. The compound was selective with regard to related transporters and blocked neutral amino acid uptake in inverted sections of mouse intestine. Conclusion And Implications The tools established in this study can be widely used to identify new transport inhibitors. Using these tools, we were able to identify compounds that can be used to study epithelial transport, to induce protein restriction, or be developed further through medicinal chemistry.

43 citations


Cited by
More filters
Journal Article
01 Jan 2004-Nature
TL;DR: In this article, S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation, but on a high fat diet, levels of glucose and free fatty acids still rise in S6k1-dependent mice, resulting in insulin receptor desensitization.
Abstract: Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced β-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K Ay and ob/ob (also known as Lep/Lep) micetwo genetic models of obesityhave markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.

1,408 citations

01 Sep 2016
TL;DR: The first genome-wide genetic screen of an apicomplexan parasite is presented, revealing essential functions during infection of human cells and providing broad-based functional information on T. gondii genes that will facilitate future approaches to expand the horizon of antiparasitic interventions.
Abstract: National Institute of General Medical Sciences (U.S.) (Center for Integrative Synthetic Biology Grant P50GM098792)

456 citations

Journal ArticleDOI
TL;DR: The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet, and reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand.
Abstract: Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.

335 citations

01 Mar 2016
TL;DR: This article quantified the fraction of cell mass derived from different nutrients and found that the majority of carbon mass in cells is derived from other amino acids, which are consumed at much lower rates than glucose and glutamine.
Abstract: Cells must duplicate their mass in order to proliferate. Glucose and glutamine are the major nutrients consumed by proliferating mammalian cells, but the extent to which these and other nutrients contribute to cell mass is unknown. We quantified the fraction of cell mass derived from different nutrients and found that the majority of carbon mass in cells is derived from other amino acids, which are consumed at much lower rates than glucose and glutamine. While glucose carbon has diverse fates, glutamine contributes most to protein, suggesting that glutamine's ability to replenish tricarboxylic acid cycle intermediates (anaplerosis) is primarily used for amino acid biosynthesis. These findings demonstrate that rates of nutrient consumption are indirectly associated with mass accumulation and suggest that high rates of glucose and glutamine consumption support rapid cell proliferation beyond providing carbon for biosynthesis.

288 citations

Journal ArticleDOI
TL;DR: It is shown here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1, and suggests that ACEIs impact on their expression.
Abstract: Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

278 citations