scispace - formally typeset
Search or ask a question
Author

Stephen J. Luck

Bio: Stephen J. Luck is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 3415 citations.

Papers
More filters
Book
12 Aug 2005
TL;DR: In An Introduction to the Event-Related Potential Technique, Steve Luck offers the first comprehensive guide to the practicalities of conducting ERP experiments in cognitive neuroscience and related fields, including affective neuroscience and experimental psychopathology.
Abstract: The event-related potential (ERP) technique in cognitive neuroscience allows scientists to observe human brain activity that reflects specific cognitive processes. In An Introduction to the Event-Related Potential Technique, Steve Luck offers the first comprehensive guide to the practicalities of conducting ERP experiments in cognitive neuroscience and related fields, including affective neuroscience and experimental psychopathology. The book can serve as a guide for the classroom or the laboratory and as a reference for researchers who do not conduct ERP studies themselves but need to understand and evaluate ERP experiments in the literature. It summarizes the accumulated body of ERP theory and practice, providing detailed, practical advice about how to design, conduct, and interpret ERP experiments, and presents the theoretical background needed to understand why an experiment is carried out in a particular way. Luck focuses on the most fundamental techniques, describing them as they are used in many of the world's leading ERP laboratories. These techniques reflect a long history of electrophysiological recordings and provide an excellent foundation for more advanced approaches. The book also provides advice on the key topic of how to design ERP experiments so that they will be useful in answering questions of broad scientific interest. This reflects the increasing proportion of ERP research that focuses on these broader questions rather than the "ERPology" of early studies, which concentrated primarily on ERP components and methods. Topics covered include the neural origins of ERPs, signal averaging, artifact rejection and correction, filtering, measurement and analysis, localization, and the practicalities of setting up the lab.

3,416 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: ERPLAB adds to EEGLAB’s EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others.
Abstract: ERPLAB Toolbox is a freely available, open-source toolbox for processing and analyzing event-related potential (ERP) data in the MATLAB environment. ERPLAB is closely integrated with EEGLAB, a popular open-source toolbox that provides many EEG preprocessing steps and an excellent user interface design. ERPLAB adds to EEGLAB’s EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others. ERPLAB also provides robust tools for averaging EEG segments together to create averaged ERPs, for creating difference waves and other recombinations of ERP waveforms through algebraic expressions, for filtering and re-referencing the averaged ERPs, for plotting ERP waveforms and scalp maps, and for quantifying several types of amplitudes and latencies. ERPLAB’s tools can be accessed either from an easy-to-learn graphical user interface or from MATLAB scripts, and a command history function makes it easy for users with no programming experience to write scripts. Consequently, ERPLAB provides both ease of use and virtually unlimited power and flexibility, making it appropriate for the analysis of both simple and complex ERP experiments. Several forms of documentation are available, including a detailed user’s guide, a step-by-step tutorial, a scripting guide, and a set of video-based demonstrations.

1,726 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study, in contrast to the interpretation of backward model parameters.

1,105 citations

Journal ArticleDOI
TL;DR: This article focuses on two components of the event-related potential (ERP)—the P300 and the late positive potential (LPP)—and how they can be used to understand the interaction between the more automatic and controlled processing of emotional stimuli.
Abstract: Progress in the study of emotion and emotion regulation has increasingly been informed by neuroscientific methods. This article focuses on two components of the event-related potential (ERP)--the P300 and the late positive potential (LPP)--and how they can be used to understand the interaction between the more automatic and controlled processing of emotional stimuli. Research is reviewed exploring: the dynamics of emotional response as indexed at early and late latencies; neurobiological correlates of emotional response; individual and developmental differences; ways in which the LPP can be utilized as a measure of emotion regulation. Future directions for the application of ERP/electroencephalogram (EEG) in achieving a more complete understanding of emotional processing and its regulation are presented.

1,023 citations

Journal ArticleDOI
TL;DR: This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches to help the reader to appropriately design and conduct studies involving these brain stimulation techniques.

942 citations

Journal ArticleDOI
TL;DR: This tutorial review detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions.
Abstract: In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets.

916 citations