scispace - formally typeset
Search or ask a question
Author

Stephen J. Pearton

Bio: Stephen J. Pearton is an academic researcher from University of Florida. The author has contributed to research in topics: Dry etching & Etching (microfabrication). The author has an hindex of 104, co-authored 1913 publications receiving 58669 citations. Previous affiliations of Stephen J. Pearton include Kyungpook National University & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the dc and rf characteristics of a p-n-p GaAs/InGaAsN/GaAs double heterojunction bipolar transistor have been demonstrated.
Abstract: We have demonstrated the dc and rf characteristics of a novel p-n-p GaAs/InGaAsN/GaAs double heterojunction bipolar transistor. This device has near ideal current-voltage (I-V) characteristics with a current gain greater than 45. The smaller bandgap energy of the InGaAsN base has led to a device turn-on voltage that is 0.27 V lower than in a comparable p-n-p AlGaAs/GaAs heterojunction bipolar transistor. This device has shown f/sub T/ and f/sub MAX/ values of 12 GHz. In addition, the aluminum-free emitter structure eliminates issues typically associated with AlGaAs.

14 citations

Journal ArticleDOI
TL;DR: The passivation of deep donor centers in high-purity, liquid-phase-epitaxial n-GaAs (ND-NA = 8-10 × 1013 cm¯3) by reaction with atomic hydrogen was observed using deep-level transient spectroscopy.
Abstract: The passivation of deep donor centres in high-purity, liquid-phase-epitaxial n-GaAs (ND-NA = 8-10 × 1013 cm¯3) by reaction with atomic hydrogen has been observed using deep-level transient spectroscopy. Exposure to the hydrogen plasma for 3 h at 300°C neutralised 99% of the deep levels to a depth of approximately 7 µm.

14 citations

Journal ArticleDOI
TL;DR: A review of various annealing regimes which are useful for heat treating GaAs and related compounds can be found in this paper, where examples are chosen which illustrate unique and potentially useful features of Rapid Annealing.
Abstract: In recent years, rapid annealing of GaAs has been employed to activate ion implanted dopants and to produce metal-semiconductor contacts. More recently, rapid heating techniques have been used to anneal heterostructures without degrading requisite high mobilities of SDHT devices. This paper reviews the various annealing regimes which are useful for heat treating GaAs and related compounds. Examples are chosen which illustrate unique and potentially useful features of rapid annealing.

14 citations

Journal ArticleDOI
TL;DR: In this article, Ga2O3 was grown by Halide Vapor Phase Epitaxy (HVPE) on bulk heavily B-doped (001)-oriented diamond substrates using thin interlayers of Al 2O3 deposited by HVPE or Al N/AlGaN deposited by metalorganic chemical vapor deposition.
Abstract: Films of Ga2O3 were grown by Halide Vapor Phase Epitaxy (HVPE) on bulk heavily B-doped (001)-oriented diamond substrates using thin interlayers of Al2O3 deposited by HVPE or AlN/AlGaN deposited by metalorganic chemical vapor deposition. The growth with AlN/AlGaN was dominated by the formation of a highly conducting ɛ-phase with poor crystalline quality. For these samples, excessive leakage of Schottky diodes and of the Ga2O3/diamond heterojunction prevented meaningful electrical characterization. The film grown with the Al2O3 interlayer was mainly composed of (−201) β-Ga2O3 with an admixture of the ɛ-phase. The film had a low density of residual shallow donors, 5 × 1015 cm−3, with deep electron traps spectra consisting of the well documented centers for β-Ga2O3 near Ec 0.27, Ec 0.7, and Ec 1 eV, all of which are often ascribed to native defects or their complexes. The electrical properties of heterojunctions were mostly determined by the properties of the Ga2O3 films. Both Schottky diodes and heterojunctions showed measurable photosensitivity for 259 nm wavelength excitation, but very low photocurrent for near-UV (365 nm wavelength excitation).

14 citations

Journal ArticleDOI
TL;DR: In this paper, high-aluminum content channel (Al0.85Ga0.15N/ Al0.7 Ga0.3N) HEMTs were operated from room temperature to 500°C in ambient.
Abstract: High Aluminum content channel (Al0.85Ga0.15N/ Al0.7Ga0.3N) High Electron Mobility Transistors (HEMTs) were operated from room temperature to 500°C in ambient. The devices exhibited only moderate reduction, 58%, in on-state forward current. Gate lag measurements at 100 kHz and 10% duty only showed a slight reduction in pulsed current from DC at 500°C and high gate voltages. Interfacial trap densities were $2 \times 10^{11}$ over the range 25–300°C and $3 \times 10^{12}$ cm $^{-2}$ from 300–500°C from the subthreshold swing. These low interfacial trap densities and the near ideal gate lag measurement indicate high-quality epi layers. The insulating properties of the barrier layer led to low gate induced drain leakage current of $\sim 10^{-12}$ A/mm and $\sim 10^{-8}$ A/mm at 25 and 500°C, respectively. Low leakage current was enabled by the high Schottky barrier of the Ni/Au gate, 1.1 eV and 3.3 eV at 25 and 500°C, respectively. These properties of the AlGaN channel HEMTs demonstrate their potential for high power and high temperature operation.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations