scispace - formally typeset
Search or ask a question
Author

Stephen J. Pearton

Bio: Stephen J. Pearton is an academic researcher from University of Florida. The author has contributed to research in topics: Dry etching & Etching (microfabrication). The author has an hindex of 104, co-authored 1913 publications receiving 58669 citations. Previous affiliations of Stephen J. Pearton include Kyungpook National University & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, single ZnO nanowire metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated using nanowires grown by site selective molecular-beam epitaxy.
Abstract: Single ZnO nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated using nanowires grown by site selective molecular-beam epitaxy. When measured in the dark at 25°C, he depletion-mode transistors exhibit good saturation behavior, a threshold voltage of ∼−3V, and a maximum transconductance of order 0.3mS∕mm. Under ultraviolet (366nm) illumination, the drain–source current increase by approximately a factor of 5 and the maximum transconductance is ∼5mS∕mm. The channel mobility is estimated to be ∼3cm2∕Vs, which is comparable to that reported for thin film ZnO enhancement mode MOSFETs, and the on∕off ratio was ∼25 in the dark and ∼125 under UV illumination.

236 citations

Journal ArticleDOI
TL;DR: In this article, the radiation resistance of GaN-based blue light emitting diodes (LEDs) to different types of ionizing radiation, and the role of existing defects in GaN are discussed.
Abstract: GalliumNitridebasedhighelectronmobilitytransistors(HEMTs)areattractiveforuseinhighpowerandhighfrequencyapplications, with higher breakdown voltages and two dimensional electron gas (2DEG) density compared to their GaAs counterparts. Specific applications for nitride HEMTs include air, land and satellite based communications and phased array radar. Highly efficient GaNbased blue light emitting diodes (LEDs) employ AlGaN and InGaN alloys with different compositions integrated into heterojunctions and quantum wells. The realization of these blue LEDs has led to white light sources, in which a blue LED is used to excite a phosphor material; light is then emitted in the yellow spectral range, which, combined with the blue light, appears as white. Alternatively, multiple LEDs of red, green and blue can be used together. Both of these technologies are used in high-efficiency white electroluminescent light sources. These light sources are efficient and long-lived and are therefore replacing incandescent and fluorescent lamps for general lighting purposes. Since lighting represents 20‐30% of electrical energy consumption, and because GaN white light LEDs require ten times less energy than ordinary light bulbs, the use of efficient blue LEDs leads to significant energy savings. GaN-based devices are more radiation hard than their Si and GaAs counterparts due to the high bond strength in III-nitride materials. The response of GaN to radiation damage is a function of radiation type, dose and energy, as well as the carrier density, impurity content and dislocation density in the GaN. The latter can act as sinks for created defects and parameters such as the carrier removal rate due to trapping of carriers into radiation-induced defects depends on the crystal growth method used to grow the GaN layers. The growth method has a clear effect on radiation response beyond the carrier type and radiation source. We review data on the radiation resistance of AlGaN/GaN and InAlN/GaN HEMTs and GaN‐based LEDs to different types of ionizing radiation, and discuss ion stopping mechanisms. The primary energy levels introduced by different forms of radiation, carrier removal rates and role of existing defects in GaN are discussed. The carrier removal rates are a function of initial carrier concentration and dose but not of dose rate or hydrogen concentration in the nitride material grown by Metal Organic Chemical Vapor Deposition. Proton and electron irradiation damage in HEMTs creates positive threshold voltage shifts due to a decrease in the two dimensional electron gas concentration resulting from electron trapping at defect sites, as well as a decrease in carrier mobility and degradation of drain current and transconductance. State-of-art simulators now provide accurate predictions for the observed changes in radiation-damaged HEMT performance. Neutron irradiation creates more extended damage regions and at high doses leads to Fermi level pinning while 60 Co γ-ray irradiation leads to much smaller changes in HEMT drain current relative to the other forms of radiation. In InGaN/GaN blue LEDs irradiated with protons at fluences near 10 14 cm −2 or electrons at fluences near 10 16 cm −2 , both current-voltage and light output-current characteristics are degraded with increasing proton dose. The optical performance of the LEDs is more sensitive to the proton or electron irradiation than that of the corresponding electrical performances. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any

235 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that hydrogen penetration depth into GaAs(Si) is inversely dependent on the Si concentration, and that the free-carrier concentration can be restored by heating at 420°C for less than 3 min.
Abstract: Hydrogen plasma exposure of n‐type GaAs(Si) at 250 °C results in a decrease of the free‐carrier concentration by several orders of magnitude. This neutralization effect has been demonstrated in silicon‐doped layers grown by molecular beam epitaxy or formed by annealed implants as well as in bulk material. The same effect is produced electrochemically (H3PO4 electrolyte), whereas helium plasma exposure has no effect, thus confirming the role of hydrogen insertion. The hydrogen penetration depth into GaAs(Si) is inversely dependent on the Si concentration. Recovery of the electrical activity follows first order dissociation kinetics with a dissociation energy of 2.1 eV. Complete restoration of free‐carrier concentration occurs by heating at 420 °C for less than 3 min. Extrapolated to low temperatures, these results imply many years of stability at 150 °C or below.

221 citations

Journal ArticleDOI
TL;DR: In this article, inductively coupled plasma (ICP) etch rates for GaN were reported as a function of plasma pressure, plasma chemistry, rf power, and ICP power.
Abstract: Inductively coupled plasma (ICP) etch rates for GaN are reported as a function of plasma pressure, plasma chemistry, rf power, and ICP power. Using a Cl2/H2/Ar plasma chemistry, GaN etch rates as high as 6875 A/min are reported. The GaN surface morphology remains smooth over a wide range of plasma conditions as quantified using atomic force microscopy. Several etch conditions yield highly anisotropic profiles with smooth sidewalls. These results have direct application to the fabrication of group‐III nitride etched laser facets.

218 citations

Journal ArticleDOI
TL;DR: The presence of ferromagnetic clusters and hysteresis to temperatures of at least 330 K is attributed to disorder and proximity to a metal-insulating transition.
Abstract: Ion implantation of Mn ions into hole-doped GaP has been used to induce ferromagnetic behavior above room temperature for optimized Mn concentrations near 3 at. %. The magnetism is suppressed when the Mn dose is increasedor decreased away from the 3 at. % value, or when n-type GaP substrates are used. At low temperatures the saturated moment is on the order of 1 Bohr magneton, and the spin wave stiffness inferred from the Bloch-law T 3 / 2 dependence of the magnetization provides an estimate T c = 385 K of the Curie temperature that exceeds the experimental value, T c = 270 K. The presence of ferromagnetic clusters and hysteresis to temperatures of at least 330 K is attributed to disorder and proximity to a metal-insulating transition.

214 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations