scispace - formally typeset
Search or ask a question
Author

Stephen R. Broderick

Bio: Stephen R. Broderick is an academic researcher from Johns Hopkins University School of Medicine. The author has contributed to research in topics: Lung cancer & Medicine. The author has an hindex of 26, co-authored 62 publications receiving 6237 citations. Previous affiliations of Stephen R. Broderick include Mount Sinai St. Luke's and Mount Sinai Roosevelt & Memorial Sloan Kettering Cancer Center.


Papers
More filters
Journal ArticleDOI
Li Ding1, Gad Getz2, David A. Wheeler3, Elaine R. Mardis1, Michael D. McLellan1, Kristian Cibulskis2, Carrie Sougnez2, Heidi Greulich4, Heidi Greulich2, Donna M. Muzny3, Margaret Morgan3, Lucinda Fulton1, Robert S. Fulton1, Qunyuan Zhang1, Michael C. Wendl1, Michael S. Lawrence2, David E. Larson1, Ken Chen1, David J. Dooling1, Aniko Sabo3, Alicia Hawes3, Hua Shen3, Shalini N. Jhangiani3, Lora Lewis3, Otis Hall3, Yiming Zhu3, Tittu Mathew3, Yanru Ren3, Jiqiang Yao3, Steven E. Scherer3, Kerstin Clerc3, Ginger A. Metcalf3, Brian Ng3, Aleksandar Milosavljevic3, Manuel L. Gonzalez-Garay3, John R. Osborne1, Rick Meyer1, Xiaoqi Shi1, Yuzhu Tang1, Daniel C. Koboldt1, Ling Lin1, Rachel Abbott1, Tracie L. Miner1, Craig Pohl1, Ginger A. Fewell1, Carrie A. Haipek1, Heather Schmidt1, Brian H. Dunford-Shore1, Aldi T. Kraja1, Seth D. Crosby1, Christopher S. Sawyer1, Tammi L. Vickery1, Sacha N. Sander1, Jody S. Robinson1, Wendy Winckler2, Wendy Winckler4, Jennifer Baldwin2, Lucian R. Chirieac4, Amit Dutt2, Amit Dutt4, Timothy Fennell2, Megan Hanna2, Megan Hanna4, Bruce E. Johnson4, Robert C. Onofrio2, Roman K. Thomas5, Giovanni Tonon4, Barbara A. Weir2, Barbara A. Weir4, Xiaojun Zhao4, Xiaojun Zhao2, Liuda Ziaugra2, Michael C. Zody2, Thomas J. Giordano6, Mark B. Orringer6, Jack A. Roth, Margaret R. Spitz7, Ignacio I. Wistuba, Bradley A. Ozenberger8, Peter J. Good8, Andrew C. Chang6, David G. Beer6, Mark A. Watson1, Marc Ladanyi9, Stephen R. Broderick9, Akihiko Yoshizawa9, William D. Travis9, William Pao9, Michael A. Province1, George M. Weinstock1, Harold E. Varmus9, Stacey Gabriel2, Eric S. Lander2, Richard A. Gibbs3, Matthew Meyerson4, Matthew Meyerson2, Richard K. Wilson1 
23 Oct 2008-Nature
TL;DR: Somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B are found.
Abstract: Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.

2,615 citations

Journal ArticleDOI
TL;DR: Nivolumab was associated with few side effects, did not delay surgery, and induced a major pathological response in 45% of resected tumors, and the tumor mutational burden was predictive of the pathological response to PD‐1 blockade.
Abstract: Background Antibodies that block programmed death 1 (PD-1) protein improve survival in patients with advanced non–small-cell lung cancer (NSCLC) but have not been tested in resectable NSCLC, a condition in which little progress has been made during the past decade. Methods In this pilot study, we administered two preoperative doses of PD-1 inhibitor nivolumab in adults with untreated, surgically resectable early (stage I, II, or IIIA) NSCLC. Nivolumab (at a dose of 3 mg per kilogram of body weight) was administered intravenously every 2 weeks, with surgery planned approximately 4 weeks after the first dose. The primary end points of the study were safety and feasibility. We also evaluated the tumor pathological response, expression of programmed death ligand 1 (PD-L1), mutational burden, and mutation-associated, neoantigen-specific T-cell responses. Results Neoadjuvant nivolumab had an acceptable side-effect profile and was not associated with delays in surgery. Of the 21 tumors that were removed...

1,359 citations

Journal ArticleDOI
Barbara A. Weir1, Barbara A. Weir2, Michele S. Woo1, Gad Getz2, Sven Perner3, Sven Perner1, Li Ding4, Rameen Beroukhim2, Rameen Beroukhim1, William M. Lin2, William M. Lin1, Michael A. Province4, Aldi T. Kraja4, Laura A. Johnson1, Kinjal Shah1, Kinjal Shah2, Mitsuo Sato5, Roman K. Thomas6, Justine A. Barletta1, Ingrid B. Borecki4, Stephen R. Broderick7, Andrew C. Chang8, Derek Y. Chiang2, Derek Y. Chiang1, Lucian R. Chirieac1, Jeonghee Cho1, Yoshitaka Fujii9, Adi F. Gazdar5, Thomas J. Giordano8, Heidi Greulich1, Heidi Greulich2, Megan Hanna1, Megan Hanna2, Bruce E. Johnson1, Mark G. Kris7, Alex E. Lash7, Ling Lin4, Neal I. Lindeman1, Elaine R. Mardis4, John Douglas Mcpherson10, John D. Minna5, Margaret Morgan10, Mark Nadel1, Mark Nadel2, Mark B. Orringer8, John R. Osborne4, Brad Ozenberger11, Alex H. Ramos1, Alex H. Ramos2, James T. Robinson2, Jack A. Roth12, Valerie W. Rusch7, Hidefumi Sasaki9, Frances A. Shepherd13, Carrie Sougnez2, Margaret R. Spitz12, Ming-Sound Tsao13, David Twomey2, Roel G.W. Verhaak14, George M. Weinstock10, David A. Wheeler10, Wendy Winckler2, Wendy Winckler1, Akihiko Yoshizawa7, Soyoung Yu1, Maureen F. Zakowski7, Qunyuan Zhang4, David G. Beer8, Ignacio I. Wistuba12, Mark A. Watson4, Levi A. Garraway2, Levi A. Garraway1, Marc Ladanyi7, William D. Travis7, William Pao7, Mark A. Rubin1, Mark A. Rubin2, Stacey Gabriel2, Richard A. Gibbs10, Harold E. Varmus7, Richard K. Wilson4, Eric S. Lander14, Eric S. Lander1, Eric S. Lander2, Matthew Meyerson1, Matthew Meyerson2 
06 Dec 2007-Nature
TL;DR: A large-scale project to characterize copy-number alterations in primary lung adenocarcinomas using dense single nucleotide polymorphism arrays identifies NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung carcinomas.
Abstract: Somatic alterations in cellular DNA underlie almost all human cancers 1 . The prospect of targeted therapies 2 and the development of high-resolution, genome-wide approaches 3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection oftumours(n 5371)usingdensesinglenucleotidepolymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scalecopy-numbergainorloss,ofwhichonlyahandfulhave been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in 12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineagespecific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered. A collection of 528 snap-frozen lung adenocarcinoma resection specimens, with at least 70% estimated tumour content, was selected by a panel of thoracic pathologists (Supplementary Table 1); samples were anonymized to protect patient privacy. Tumour and normal DNAs were hybridized to Affymetrix 250K Sty single nucleotide polymorphism (SNP)arrays. Genomic copy number foreach ofover 238,000 probe sets was determined by calculating the intensity ratio between the tumour DNA and the average of a set of normal DNAs 9,10 . Segmented copy numbers for each tumour were inferred with the GLAD (gain and loss analysis of DNA) algorithm 11 and normalized to a median of two copies. Each copy number profile was then subjected to quality control, resulting in 371 high-quality samples used for further analysis, of which 242 had matched normal

1,087 citations

Journal ArticleDOI
TL;DR: In patients with resectable NSCLC, neoadjuvant nivolumab plus chemotherapy resulted in significantly longer event-free survival and a higher percentage of patients with a pathological complete response than chemotherapy alone.
Abstract: BACKGROUND Neoadjuvant or adjuvant chemotherapy confers a modest benefit over surgery alone for resectable non-small-cell lung cancer (NSCLC). In early-phase trials, nivolumab-based neoadjuvant regimens have shown promising clinical activity; however, data from phase 3 trials are needed to confirm these findings. METHODS In this open-label, phase 3 trial, we randomly assigned patients with stage IB to IIIA resectable NSCLC to receive nivolumab plus platinum-based chemotherapy or platinum-based chemotherapy alone, followed by resection. The primary end points were event-free survival and pathological complete response (0% viable tumor in resected lung and lymph nodes), both evaluated by blinded independent review. Overall survival was a key secondary end point. Safety was assessed in all treated patients. RESULTS The median event-free survival was 31.6 months (95% confidence interval [CI], 30.2 to not reached) with nivolumab plus chemotherapy and 20.8 months (95% CI, 14.0 to 26.7) with chemotherapy alone (hazard ratio for disease progression, disease recurrence, or death, 0.63; 97.38% CI, 0.43 to 0.91; P = 0.005). The percentage of patients with a pathological complete response was 24.0% (95% CI, 18.0 to 31.0) and 2.2% (95% CI, 0.6 to 5.6), respectively (odds ratio, 13.94; 99% CI, 3.49 to 55.75; P<0.001). Results for event-free survival and pathological complete response across most subgroups favored nivolumab plus chemotherapy over chemotherapy alone. At the first prespecified interim analysis, the hazard ratio for death was 0.57 (99.67% CI, 0.30 to 1.07) and did not meet the criterion for significance. Of the patients who underwent randomization, 83.2% of those in the nivolumab-plus-chemotherapy group and 75.4% of those in the chemotherapy-alone group underwent surgery. Grade 3 or 4 treatment-related adverse events occurred in 33.5% of the patients in the nivolumab-plus-chemotherapy group and in 36.9% of those in the chemotherapy-alone group. CONCLUSIONS In patients with resectable NSCLC, neoadjuvant nivolumab plus chemotherapy resulted in significantly longer event-free survival and a higher percentage of patients with a pathological complete response than chemotherapy alone. The addition of nivolumab to neoadjuvant chemotherapy did not increase the incidence of adverse events or impede the feasibility of surgery. (Funded by Bristol Myers Squibb; CheckMate 816 ClinicalTrials.gov number, NCT02998528.).

321 citations

Journal ArticleDOI
TL;DR: In this paper, a 3-step modified Delphi method involving a multidisciplinary expert panel of 6 relevant stakeholder groups (surgeons, pain specialists, outpatient surgical nurse practitioners, surgical residents, patients, and pharmacists) was used to develop consensus ranges for outpatient opioid prescribing at the time of discharge after 20 common procedures in 8 surgical specialties.
Abstract: Background One in 16 surgical patients prescribed opioids becomes a long-term user. Overprescribing opioids after surgery is common, and the lack of multidisciplinary procedure-specific guidelines contributes to the wide variation in opioid prescribing practices. We hypothesized that a single-institution, multidisciplinary expert panel can establish consensus on ideal opioid prescribing for select common surgical procedures. Study Design We used a 3-step modified Delphi method involving a multidisciplinary expert panel of 6 relevant stakeholder groups (surgeons, pain specialists, outpatient surgical nurse practitioners, surgical residents, patients, and pharmacists) to develop consensus ranges for outpatient opioid prescribing at the time of discharge after 20 common procedures in 8 surgical specialties. Prescribing guidelines were developed for opioid-naive adult patients without chronic pain undergoing uncomplicated procedures. The number of opioid tablets was defined using oxycodone 5 mg oral equivalents. Results For all 20 surgical procedures reviewed, the minimum number of opioid tablets recommended by the panel was 0. Ibuprofen was recommended for all patients unless medically contraindicated. The maximum number of opioid tablets varied by procedure (median 12.5 tablets), with panel recommendations of 0 opioid tablets for 3 of 20 (15%) procedures, 1 to 15 opioid tablets for 11 of 20 (55%) procedures, and 16 to 20 tablets for 6 of 20 (30%) procedures. Overall, patients who had the procedures voted for lower opioid amounts than surgeons who performed them. Conclusions Procedure-specific prescribing recommendations may help provide guidance to clinicians who are currently overprescribing opioids after surgery. Multidisciplinary, patient-centered consensus guidelines for more procedures are feasible and may serve as a tool in combating the opioid crisis.

297 citations


Cited by
More filters
Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: The ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity.
Abstract: We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer.

9,355 citations

Journal ArticleDOI
Ludmil B. Alexandrov1, Serena Nik-Zainal2, Serena Nik-Zainal3, David C. Wedge1, Samuel Aparicio4, Sam Behjati1, Sam Behjati5, Andrew V. Biankin, Graham R. Bignell1, Niccolo Bolli1, Niccolo Bolli5, Åke Borg2, Anne Lise Børresen-Dale6, Anne Lise Børresen-Dale7, Sandrine Boyault8, Birgit Burkhardt8, Adam Butler1, Carlos Caldas9, Helen Davies1, Christine Desmedt, Roland Eils5, Jorunn E. Eyfjord10, John A. Foekens11, Mel Greaves12, Fumie Hosoda13, Barbara Hutter5, Tomislav Ilicic1, Sandrine Imbeaud14, Sandrine Imbeaud15, Marcin Imielinsk15, Natalie Jäger5, David T. W. Jones16, David T. Jones1, Stian Knappskog17, Stian Knappskog11, Marcel Kool11, Sunil R. Lakhani18, Carlos López-Otín18, Sancha Martin1, Nikhil C. Munshi19, Nikhil C. Munshi20, Hiromi Nakamura13, Paul A. Northcott16, Marina Pajic21, Elli Papaemmanuil1, Angelo Paradiso22, John V. Pearson23, Xose S. Puente18, Keiran Raine1, Manasa Ramakrishna1, Andrea L. Richardson22, Andrea L. Richardson20, Julia Richter22, Philip Rosenstiel22, Matthias Schlesner5, Ton N. Schumacher24, Paul N. Span25, Jon W. Teague1, Yasushi Totoki13, Andrew Tutt24, Rafael Valdés-Mas18, Marit M. van Buuren25, Laura van ’t Veer26, Anne Vincent-Salomon27, Nicola Waddell23, Lucy R. Yates1, Icgc PedBrain24, Jessica Zucman-Rossi15, Jessica Zucman-Rossi14, P. Andrew Futreal1, Ultan McDermott1, Peter Lichter24, Matthew Meyerson20, Matthew Meyerson15, Sean M. Grimmond23, Reiner Siebert22, Elias Campo28, Tatsuhiro Shibata13, Stefan M. Pfister16, Stefan M. Pfister11, Peter J. Campbell29, Peter J. Campbell30, Peter J. Campbell3, Michael R. Stratton3, Michael R. Stratton31 
22 Aug 2013-Nature
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

7,904 citations

Journal ArticleDOI
TL;DR: Screening with the use of low-dose CT reduces mortality from lung cancer, as compared with the radiography group, and the rate of death from any cause was reduced.
Abstract: Background The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. Methods From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. Results The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Conclusions Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).

7,710 citations

Journal ArticleDOI
Debra A. Bell1, Andrew Berchuck2, Michael J. Birrer3, Jeremy Chien1  +282 moreInstitutions (35)
30 Jun 2011-Nature
TL;DR: It is reported that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1,BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes.
Abstract: A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients' lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.

5,878 citations

01 Jun 2011
TL;DR: The Cancer Genome Atlas project has analyzed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours as mentioned in this paper.
Abstract: A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.

5,609 citations