scispace - formally typeset
Search or ask a question
Author

Stephen R. Turns

Bio: Stephen R. Turns is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Combustion & Diffusion flame. The author has an hindex of 22, co-authored 54 publications receiving 3724 citations.


Papers
More filters
Book
01 Mar 2000
TL;DR: In this article, the second edition of the Second Edition of the first edition, the authors presented a simplified conversation equation for the solution of nonlinear flow equations for a C-H-O-N system.
Abstract: Preface Preface to the Second Edition Preface to the First Edition 1: Introduction 2: Combustion and Thermochemistry 3: Introduction to Mass Transfer 4: Chemical Kinetics 5: Some Important Chemical Mechanisms 6: Coupling Chemical and Thermal Analyses of Reacting Systems 7: Simplifed Conversation Equations for Reacting Flows 8: Laminar Premixed Flames 9: Laminar Diffusion Flames 10: Droplet Evaporation and Burning 11: Introduction to Turbulent Flows 12: Turbulent Premixed Flames 13: Turbulent Nonpremixed Flames 14: Burning of Solids 15: Pollutant Emissions 16: Detonations Appendix A: Selected Thermodynamic Propertiesof Gases Comprising C-H-O-N System Appendix B: Fuel Properties Appendix C: Selected Properties of Air, Nitrogen, and Oxygen Appendix D: Diffusion Coefficients and Methodology for their Estimation Appendix E: Generalized Newton's Method for the Solution of Nonlinear Equations Appendix F: Computer Codes for Equilibrium Products of Hydrocarbon-Air Combustion

2,129 citations

Journal ArticleDOI
TL;DR: In this article, the effects of flow parameters and fuel type on radiant losses are shown to be important in determining the NOx emissions from simple jet flames, and the results show that gas-molecular radiation is more relevant than broadband radiation from soot for determining temperatures in NO formation zones.

174 citations

Journal ArticleDOI
TL;DR: Experimental studies and models of NOx formation in simple non-premixed flames at atmospheric pressure are reviewed in this paper, where the failure of a simple leading-order scaling is investigated and interpreted in terms of the various interrelated parameters affecting NO formation: the relative importance of various NO-forming chemical pathways, departures of O-atom concentrations and temperatures from their equilibrium values, flame strain, and flame radiation.

140 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive computational fluid dynamics (CFD) model is developed by integrating state-of-the-art models for detailed chemistry, soot formation and oxidation, and thermal radiation into a three-dimensional unstructured CFD code.

122 citations

Journal ArticleDOI
TL;DR: In this article, the authors present results from an investigation of soot formation in turbulent, non-premixed, C{sub 2}H{sub 4}/air jet flames.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The analysis supports theory claiming that calls to increase the number of students receiving STEM degrees could be answered, at least in part, by abandoning traditional lecturing in favor of active learning and supports active learning as the preferred, empirically validated teaching practice in regular classrooms.
Abstract: creased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

5,474 citations

Journal ArticleDOI
TL;DR: In this article, the authors review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors, and show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets.
Abstract: . The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass-burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

1,344 citations

Journal ArticleDOI
TL;DR: A review of the published knowledge on the oxy-fuel process can be found in this paper, focusing particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics.

1,042 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: A review of the current state of knowledge of the fundamental sooting processes, including the chemistry of soot precursors, particle nucleation and mass/size growth, can be found in this article.
Abstract: Over the last two decades, our understanding of soot formation has evolved from an empirical, phenomenological description to an age of quantitative modeling for at least small fuel compounds. In this paper, we review the current state of knowledge of the fundamental sooting processes, including the chemistry of soot precursors, particle nucleation and mass/size growth. The discussion shows that though much progress has been made, critical gaps remain in many areas of our knowledge. We propose the roles of certain aromatic radicals resulting from localized π electron structures in particle nucleation and subsequent mass growth. The existence of these free radicals provides a rational explanation for the strong binding forces needed for forming initial clusters of polycyclic aromatic hydrocarbons. They may also explain a range of currently unexplained sooting phenomena, including the large amount of aliphatics observed in nascent soot formed in laminar premixed flames and the mass growth of soot in the absence of gas-phase H atoms. While the above suggestions are inspired, to an extent, by recent theoretical findings from the materials research community, this paper also demonstrates that the knowledge garnered through our longstanding interest in soot formation may well be carried over to flame synthesis of functional nanomaterials for clean and renewable energy applications. In particular, work on flame-synthesized thin films of nanocrystalline titania illustrates how our combustion knowledge might be useful for developing advanced yet inexpensive thin-film solar cells and chemical sensors for detecting gaseous air pollutants.

953 citations

Journal ArticleDOI
TL;DR: In this paper, a dual fuel engine combustion technology called Reactivity Controlled Compression Ignition (RCCI) is highlighted, since it provides more efficient control over the combustion process and has the capability to lower fuel use and pollutant emissions.

889 citations