scispace - formally typeset
Search or ask a question
Author

Stephen Reid

Bio: Stephen Reid is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Amylase & Phytoglycogen. The author has an hindex of 8, co-authored 11 publications receiving 205 citations.

Papers
More filters
Journal ArticleDOI
01 May 2019-Gut
TL;DR: Functional studies demonstrated that anti-TNF-induced apoptosis in mucosal T cells is abrogated by IL-23, identified as a suitable molecular target in patients with Crohn’s disease refractory to anti-tumour necrosis factor therapy.
Abstract: Objective Anti-tumour necrosis factor (TNF) antibodies are successfully used for treatment of Crohn’s disease. Nevertheless, approximately 40% of patients display failure to anti-TNF therapy. Here, we characterised molecular mechanisms that are associated with endoscopic resistance to anti-TNF therapy. Design Mucosal and blood cells were isolated from patients with Crohn’s disease prior and during anti-TNF therapy. Cytokine profiles, cell surface markers, signalling proteins and cell apoptosis were assessed by microarray, immunohistochemistry, qPCR, ELISA, whole organ cultures and FACS. Results Responders to anti-TNF therapy displayed a significantly higher expression of TNF receptor 2 (TNFR2) but not IL23R on T cells than non-responders prior to anti-TNF therapy. During anti-TNF therapy, there was a significant upregulation of mucosal IL-23p19, IL23R and IL-17A in anti-TNF non-responders but not in responders. Apoptosis-resistant TNFR2+IL23R+ T cells were significantly expanded in anti-TNF non-responders compared with responders, expressed the gut tropic integrins α4β7, and exhibited increased expression of IFN-γ, T-bet, IL-17A and RORγt compared with TNFR2+IL23R− cells, indicating a mixed Th1/Th17-like phenotype. Intestinal TNFR2+IL23R+ T cells were activated by IL-23 derived from CD14+ macrophages, which were significantly more present in non-responders prior to anti-TNF treatment. Administration of IL-23 to anti-TNF-treated mucosal organ cultures led to the expansion of CD4+IL23R+TNFR2+ lymphocytes. Functional studies demonstrated that anti-TNF-induced apoptosis in mucosal T cells is abrogated by IL-23. Conclusions Expansion of apoptosis-resistant intestinal TNFR2+IL23R+ T cells is associated with resistance to anti-TNF therapy in Crohn’s disease. These findings identify IL-23 as a suitable molecular target in patients with Crohn’s disease refractory to anti-TNF therapy.

122 citations

Journal ArticleDOI
TL;DR: In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun.
Abstract: Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels.

55 citations

Journal ArticleDOI
TL;DR: StAmy23, StBam1 and StBAM9 play distinct roles in potato cold-induced sweetening by preferentially acting on soluble phytoglycogen, soluble starch and starch granules, respectively, in different subcellular locations.
Abstract: Cold-induced sweetening (CIS) in potato is detrimental to the quality of processed products. Conversion of starch to reducing sugars (RS) by amylases is considered one of the main pathways in CIS but is not well studied. The amylase genes StAmy23, StBAM1, and StBAM9 were studied for their functions in potato CIS. StAmy23 is localized in the cytoplasm, whereas StBAM1 and StBAM9 are targeted to the plastid stroma and starch granules, respectively. Genetic transformation of these amylases in potatoes by RNA interference showed that β-amylase activity could be decreased in cold-stored tubers by silencing of StBAM1 and collective silencing of StBAM1 and StBAM9. However, StBAM9 silencing did not decrease β-amylase activity. Silencing StBAM1 and StBAM9 caused starch accumulation and lower RS, which was more evident in simultaneously silenced lines, suggesting functional redundancy. Soluble starch content increased in RNAi-StBAM1 lines but decreased in RNAi-StBAM9 lines, suggesting that StBAM1 may regulate CIS by hydrolysing soluble starch and StBAM9 by directly acting on starch granules. Moreover, StBAM9 interacted with StBAM1 on the starch granules. StAmy23 silencing resulted in higher phytoglycogen and lower RS accumulation in cold-stored tubers, implying that StAmy23 regulates CIS by degrading cytosolic phytoglycogen. Our findings suggest that StAmy23, StBAM1, and StBAM9 function in potato CIS with varying levels of impact.

52 citations

Journal ArticleDOI
TL;DR: Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance.
Abstract: BACKGROUND AND AIMS The topically applied Toll-like receptor 9 [TLR9] agonist cobitolimod is a first-in-class DNA-based oligonucleotide with demonstrated therapeutic efficacy in clinical trials with ulcerative colitis [UC] patients. We here characterized its anti-inflammatory mechanism in UC. METHODS Luminal cobitolimod administration was evaluated in an experimental dextran sodium sulfate [DSS]-induced colitis model. Cultured blood and mucosal cells from UC patients were treated with cobitolimod and analysed via microarray, quantitative real-time PCR, ELISA and flow cytometry. Intestinal slides of cobitolimod-treated UC patients were analysed by immunohistochemistry. RESULTS Cobitolimod administration markedly suppressed experimental colitis activity, and microarray analyses demonstrated mucosal IL10 upregulation and suppression of IL17 signalling pathways. Cobitolimod treatment was associated with significant induction of mucosal IL10+Tr1 and Treg cells and suppression of Th17 cells. TLR9 knockout mice indicated that cobitolimod requires TLR9 signalling for IL10 induction. In UC patients, mucosal TLR9 levels correlated with severity of inflammation. Cobitolimod inhibited IL17A and IL17F, but increased IL10 and FoxP3 expression in cultured intestinal UC T cells. Cobitolimod-mediated suppression of intestinal IL17+T cells was abrogated by IL10 blockade. Furthermore, cobitolimod led to heightened IL10 production by wound healing macrophages. Immunohistochemistry in intestinal biopsies of cobitolimod-treated UC patients indicated increased presence of IL10+mononuclear and regulatory T cells, as well as reduction of IL17+cells. CONCLUSION Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.

38 citations

Journal ArticleDOI
TL;DR: An integrated approach combining physiology, biochemistry, and molecular biology was undertaken to contribute to a better understanding of heat effects on source- and sink-organs (tubers) in a heat-susceptible cultivar.
Abstract: Potato is an important staple food with increasing popularity worldwide. Elevated temperatures significantly impair tuber yield and quality. Breeding heat-tolerant cultivars is therefore an urgent need to ensure sustainable potato production in the future. An integrated approach combining physiology, biochemistry, and molecular biology was undertaken to contribute to a better understanding of heat effects on source- (leaves) and sink-organs (tubers) in a heat-susceptible cultivar. An experimental set-up was designed allowing tissue-specific heat application. Elevated day and night (29°C/27°C) temperatures impaired photosynthesis and assimilate production. Biomass allocation shifted away from tubers towards leaves indicating reduced sink strength of developing tubers. Reduced sink strength of tubers was paralleled by decreased sucrose synthase activity and expression under elevated temperatures. Heat-mediated inhibition of tuber growth coincided with a decreased expression of the phloem-mobile tuberization signal SP6A in leaves. SP6A expression and photosynthesis were also affected, when only the belowground space was heated, and leaves were kept under control conditions. By contrast, the negative effects on tuber metabolism were attenuated, when only the shoot was subjected to elevated temperatures. This, together with transcriptional changes discussed, indicated a bidirectional communication between leaves and tubers to adjust the source capacity and/or sink strength to environmental conditions.

33 citations


Cited by
More filters
Journal ArticleDOI
16 Apr 2019-Immunity
TL;DR: The progression of IBD from the perspective of remodeling of cytokine networks is discussed, placing well-established and under-studied cytokine modules in the context of cellular interactions, their dynamic regulation in late stages of disease and their current and potential use in the clinic.

357 citations

Journal ArticleDOI
TL;DR: In this Review, Neurath delineates the cells, pathways and signals that contribute to the pathology of inflammatory bowel disease and the potential for therapeutic intervention.
Abstract: Inflammatory bowel diseases (IBDs) such as Crohn's disease and ulcerative colitis are characterized by uncontrolled activation of intestinal immune cells in a genetically susceptible host. Due to the progressive and destructive nature of the inflammatory process in IBD, complications such as fibrosis, stenosis or cancer are frequently observed, which highlights the need for effective anti-inflammatory therapy. Studies have identified altered trafficking of immune cells and pathogenic immune cell circuits as crucial drivers of mucosal inflammation and tissue destruction in IBD. A defective gut barrier and microbial dysbiosis induce such accumulation and local activation of immune cells, which results in a pro-inflammatory cytokine loop that overrides anti-inflammatory signals and causes chronic intestinal inflammation. This Review discusses pathogenic cytokine responses of immune cells as well as immune cell trafficking as a rational basis for new translational therapies in IBD.

336 citations

Journal ArticleDOI
TL;DR: The emerging understanding of the biology of IL-12 and IL-23, as well as that of their major downstream cytokines, including IL-17 are reviewed, which discusses how their biology has influenced the development of clinical trials and therapeutic strategies in IBD.
Abstract: IL-12 and IL-23 are closely related cytokines with important roles in the regulation of tissue inflammation. Converging evidence from studies in mice, human observational studies and population genetics supports the importance of these cytokines in the regulation of mucosal inflammation in the gut in particular. Ustekinumab, a therapeutic antibody targeting both cytokines is now widely licensed for the treatment of Crohn's disease, including in Europe, the USA, Canada and Japan, whilst agents targeting IL-23 specifically are in late-phase clinical trials. We review the emerging understanding of the biology of IL-12 and IL-23, as well as that of their major downstream cytokines, including IL-17. In particular, we discuss how their biology has influenced the development of clinical trials and therapeutic strategies in IBD, as well as how findings from clinical trials, at times surprising, have in turn refocused our understanding of the underlying biology.

266 citations

Journal ArticleDOI
TL;DR: Novel insights are reviewed in to inflammation and how impairment of its resolution can lead to diseases, as well as the cellular and molecular components that contribute to resolution of joint, gut, and lung inflammation.
Abstract: Inflammation and its resolution is under-studied in medicine despite being essential for understanding the development of chronic inflammatory disease. In this review article, we discuss the resolution of inflammation in both a biological and translational context. We introduce the concept of impaired resolution leading to diseases like rheumatoid arthritis, Crohn's disease, and asthma, as well as the cellular and molecular components that contribute to resolution of joint, gut, and lung inflammation, respectively. Finally, we discuss potential intervention strategies for fostering the resolution process, and their implications for the therapy of inflammatory diseases.

254 citations