scispace - formally typeset
Search or ask a question
Author

Stephen T. Talcott

Other affiliations: University of Florida, University of Arkansas, Purdue University  ...read more
Bio: Stephen T. Talcott is an academic researcher from Texas A&M University. The author has contributed to research in topics: Anthocyanin & Mangifera. The author has an hindex of 50, co-authored 130 publications receiving 7947 citations. Previous affiliations of Stephen T. Talcott include University of Florida & University of Arkansas.


Papers
More filters
Journal ArticleDOI
TL;DR: In vitro models demonstrated that increasing levels of flavonoids in combination with constant levels of caffeic and ascorbic acid gave a resultant AOX that was either additive of the two compounds or competitive in their ability to scavenge peroxyl radicals.
Abstract: The effect of fruit maturation on changes in carotenoids, flavonoids, total soluble reducing equivalents, phenolic acids, ascorbic acid, and antioxidant activity (AOX) in different pepper types (Capsicum annuum, Capsicum frutescens, and Capsicum chinese) was determined. Generally, the concentration of these chemical constituents increased as the peppers reached maturity. Peppers contained high levels of L-ascorbic acid and carotenoids at maturity, contributing 124-338% of the RDA for vitamin C and 0.33-336 RE/100 g of provitamin A activity, respectively. Levels of phenolic acids, capxanthin, and zeaxanthin generally increased during maturation, whereas the level of lutein declined. Flavonoid concentrations varied greatly among the pepper types analyzed and were negatively correlated to AOX under the conditions of the beta-carotene-linoleic assay. Model systems were used to aid in understanding the relationship between flavonoids and AOX. Significant increases in AOX were observed in pepper juice models in response to increasing dilution factors and the presence of EDTA, indicating a pro-oxidant effect due to metal ions in the system. In vitro models demonstrated that increasing levels of flavonoids in combination with constant levels of caffeic and ascorbic acid gave a resultant AOX that was either additive of the two compounds or competitive in their ability to scavenge peroxyl radicals. The model systems were in good agreement with the chemical composition of the pepper cultivars and reflected the interactions affecting AOX. More research is needed to understand the complex interactions that occur among various antioxidants present in pepper extracts.

617 citations

Journal ArticleDOI
TL;DR: The antioxidant activities evaluated by both ORAC and DPPH showed similar trends where red guava and carambola exhibited the highest and sapodilla and green papaya exhibited the lowest levels and many of the tropical fruits were shown to contain an abundance of hydrolyzable tannins, ellagic acid conjugates, and flavone glycosides.
Abstract: Fourteen tropical fruits from south Florida (red guava, white guava, carambola, red pitaya (red dragon), white pitaya (white dragon), mamey sapote, sapodilla, lychee, longan, green mango, ripe mango, green papaya, and ripe papaya) were evaluated for antioxidant activity, total soluble phenolics (TSP), total ascorbic acid (TAA), total dietary fiber (TDF), and pectin. ORAC (oxygen radical absorbance capacity) and DPPH (1,1-diphenyl-2-picrylhydrazyl, radical scavenging activity) assays were used to determine antioxidant activity. The TSP, ORAC, and DPPH ranged from 205.4 to 2316.7 g gallic acid equiv/g puree, <0.1 to 16.7 Imol Trolox equiv/g puree, and 2.1 to 620.2 Ig gallic acid equiv/g puree, respectively. The TAA, TDF, and pectin ranged from 7.5 to 188.8 mg/100 g, 0.9 to 7.2 g/100 g, and 0.20 to 1.04 g/100 g, respectively. The antioxidant activities, TSP, TAA, TDF, and pectin were influenced by cultivar (papaya, guava, and dragon fruit) and ripening stage (papaya and/or mango). Antioxidant activity showed high correlations with levels of TSP compounds (r ) 0.96) but low correlations with levels of ascorbic acid (r ) 0.35 and 0.23 for ORAC and DPPH data, respectively). The antioxidant activities evaluated by both ORAC and DPPH showed similar trends where red guava and carambola exhibited the highest and sapodilla and green papaya exhibited the lowest levels. Guava and mamey sapote exhibited the highest TDF and pectin levels. Many of the tropical fruits were shown to contain an abundance of hydrolyzable tannins, ellagic acid conjugates, and flavone glycosides. Preliminary descriptions are given of the phenols in red/white pitaya (dragonfruit), lychee, and mamey sapote, these fruit being thus far uncharacterized in the literature.

354 citations

Journal ArticleDOI
TL;DR: Empirical evidence indicating that moderate wine consumption, within the range recommended by the FDA dietary guidelines of one drink per day for women and two for men, may help reduce the relative risk for AD clinical dementia is supported.
Abstract: Recent studies suggest that moderate red wine consumption reduces the incidence of Alzheimer's disease (AD) clinical dementia. Using Tg2576 mice, which model AD-type amyloid beta-protein (Abeta) neuropathology, we tested whether moderate consumption of the red wine Cabernet Sauvignon modulates AD-type neuropathology and cognitive deterioration. The wine used in the study was generated using Cabernet Sauvignon grapes from Fresno, California, and was delivered to Tg2576 in a final concentration of approximately 6% ethanol. We found that Cabernet Sauvignon significantly attenuated AD-type deterioration of spatial memory function and Abeta neuropathology in Tg2576 mice relative to control Tg2576 mice that were treated with either a comparable amount of ethanol or water alone. Chemical analysis showed the Cabernet Sauvignon used in this study contains a very low content of resveratrol (0.2 mg/L), 10-fold lower than the minimal effective concentration shown to promote Abeta clearance in vitro. Our studies suggest Cabernet Sauvignon exerts a beneficial effect by promoting nonamyloidogenic processing of amyloid precursor protein, which ultimately prevents the generation of Abeta peptides. This study supports epidemiological evidence indicating that moderate wine consumption, within the range recommended by the FDA dietary guidelines of one drink per day for women and two for men, may help reduce the relative risk for AD clinical dementia.

299 citations

Journal ArticleDOI
TL;DR: Açai was recognized for its functional properties for use in food and nutraceutical products and in the presence of ascorbic acid, acylated anthocyanin sources generally had increased color stability.
Abstract: Anthocyanin and polyphenolic compounds present in acai (Euterpe oleracea Mart.) were determined and their respective contribution to the overall antioxidant capacity established. Color stability of acai anthocyanins against hydrogen peroxide (0 and 30 mmol/L) over a range of temperatures (10-30 degrees C) was also determined and compared to common anthocyanin sources. Additionally, stability in a model beverage system was evaluated in the presence of ascorbic acid and naturally occurring polyphenolic cofactors. Cyanidin 3-glucoside (1040 mg/L) was the predominant anthocyanin in acai and correlated to antioxidant content, while 16 other polyphenolics were detected from 4 to 212 mg/L. Red grape anthocyanins were most stable in the presence of hydrogen peroxide, while acai and pigments rich in acylated anthocyanins displayed lower color stability in a temperature-dependent manner. In the presence of ascorbic acid, acylated anthocyanin sources generally had increased color stability. Acai was recognized for its functional properties for use in food and nutraceutical products.

240 citations

Journal ArticleDOI
TL;DR: The interaction of ellagic acid and quercetin demonstrated an enhanced anticarcinogenic potential of polyphenol combinations, which was not based solely on the additive effect of individual compounds, but rather on synergistic biochemical interactions.
Abstract: Little information is available regarding possible synergistic or antagonistic biochemical interactions among polyphenols contained in fruits and vegetables. Identifying potential interactions among these compounds may help to define the efficiency of polyphenol-containing foods in cancer prevention as related to structure-function activity of the compounds. The objective of this study was to investigate interactions between quercetin and ellagic acid, two polyphenolics that are present predominantly in small fruits, on cell death and proliferation-related variables in the MOLT-4 human leukemia cell line. Assays were performed to determine cell cycle kinetics, proliferation, apoptotic DNA-fragmentation and caspase-3-activity after 12, 24 and 48 h. Ellagic acid significantly potentiated the effects of quercetin (at 5 and 10 micro mol/L each) in the reduction of proliferation and viability and the induction of apoptosis. Significant alterations in cell cycle kinetics were also observed. The synergy was confirmed by an isobolographic analysis of the cell proliferation data. The interaction of ellagic acid and quercetin demonstrated an enhanced anticarcinogenic potential of polyphenol combinations, which was not based solely on the additive effect of individual compounds, but rather on synergistic biochemical interactions.

237 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The anticancer effects of phenolics in-vitro and in- vivo animal models are viewed, including recent human intervention studies, and possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.
Abstract: Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.

3,213 citations

Journal ArticleDOI
TL;DR: Guava fruit extracts were analyzed for antioxidant activity measured in methanol extract and dichloromethane extract (AOAD), ascorbic acid, total phenolics, and total carotenoids contents.

2,737 citations

Journal ArticleDOI
TL;DR: A review of phenolic and polyphenolic compounds can be found in this article, which summarizes both the synthetic and natural phenolic antioxidants, emphasizing their mode of action, health effects, degradation products and toxicology.

1,800 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review aspects of soil science, plant physiology and genetics underpinning crop bio-fortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se).
Abstract: Summary The diets of over two-thirds of the world's population lack one or more essential mineral elements. This can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentrations and/or bioavailability of mineral elements in produce (biofortification). This article reviews aspects of soil science, plant physiology and genetics underpinning crop biofortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se). Two complementary approaches have been successfully adopted to increase the concentrations of bioavailable mineral elements in food crops. First, agronomic approaches optimizing the application of mineral fertilizers and/or improving the solubilization and mobilization of mineral elements in the soil have been implemented. Secondly, crops have been developed with: increased abilities to acquire mineral elements and accumulate them in edible tissues; increased concentrations of ‘promoter’ substances, such as ascorbate, β-carotene and cysteine-rich polypeptides which stimulate the absorption of essential mineral elements by the gut; and reduced concentrations of ‘antinutrients’, such as oxalate, polyphenolics or phytate, which interfere with their absorption. These approaches are addressing mineral malnutrition in humans globally.

1,677 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the extraction of polyphenols from agricultural and industrial wastes, and summarize available data on the factors affecting their antioxidant activity and stability, and, in some cases, the reported major active compounds identified.

1,614 citations