scispace - formally typeset
Search or ask a question
Author

Steve Campbell

Bio: Steve Campbell is an academic researcher from University College Dublin. The author has contributed to research in topics: Quantum entanglement & Quantum. The author has an hindex of 27, co-authored 89 publications receiving 2052 citations. Previous affiliations of Steve Campbell include Queen's University Belfast & Trinity College, Dublin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, Paczynska et al. presented a visual representation of Einstein's gedanken experiment, Fig. 4, which was supported by the U.S National Science Foundation under Grant No. CHE-1648973.
Abstract: We are grateful to Marta Paczy´nska for creating the visual representation of Einstein’s gedankenexperiment, Fig. 1, and Lu (Lucy) Hou for providing the resources for Fig. 4. SD would like to thank Eric Lutz for many years of insightful discussions and supporting mentorship, and in particular for inciting our interest in quantum speed limits. This work was supported by the U.S. National Science Foundation under Grant No. CHE-1648973.

386 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the speed with which a quantum system can be driven when employing transitionless quantum driving and established a rigorous link between this speed, the quantum speed limit, and the (energetic) cost of implementing such a shortcut to adiabaticity.
Abstract: Achieving effectively adiabatic dynamics is a ubiquitous goal in almost all areas of quantum physics. Here, we study the speed with which a quantum system can be driven when employing transitionless quantum driving. As a main result, we establish a rigorous link between this speed, the quantum speed limit, and the (energetic) cost of implementing such a shortcut to adiabaticity. Interestingly, this link elucidates a trade-off between speed and cost, namely, that instantaneous manipulation is impossible as it requires an infinite cost. These findings are illustrated for two experimentally relevant systems---the parametric oscillator and the Landau-Zener model---which reveal that the spectral gap governs the quantum speed limit as well as the cost for realizing the shortcut.

210 citations

Journal ArticleDOI
TL;DR: A hybrid strategy combining a shortcut to adiabaticity and optimal control that allows for remarkably good performance in suppressing the defect production across the phase transition is developed.
Abstract: We study transitionless quantum driving in an infinite-range many-body system described by the Lipkin-Meshkov-Glick model. Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case. To this aim we develop a hybrid strategy combining a shortcut to adiabaticity and optimal control that allows us to achieve remarkably good performance in suppressing the defect production across the phase transition.

127 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe important milestones such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields, including quantum information theory, quantum computing, and quantum thermodynamics.
Abstract: One of the most widely known building blocks of modern physics is Heisenberg's indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this Topical Review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields -- including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this Topical Review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

112 citations

Journal Article
TL;DR: The speed with which a quantum system can be driven when employing transitionless quantum driving is studied to establish a rigorous link between this speed, the quantum speed limit, and the (energetic) cost of implementing such a shortcut to adiabaticity.

110 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Book ChapterDOI
01 Jan 1998

1,532 citations

Journal ArticleDOI
TL;DR: Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade as mentioned in this paper and different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed.
Abstract: One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed. In the first half, the mathematical properties of the measures of quantum correlations are reviewed, related to each other, and the classical-quantum division that is common among them is discussed. In the second half, it is shown that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. It is shown that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.

1,504 citations