scispace - formally typeset
Search or ask a question
Author

Steve Miller

Bio: Steve Miller is an academic researcher from Rutgers University. The author has contributed to research in topics: Graphene & Thin film. The author has an hindex of 15, co-authored 22 publications receiving 7554 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A detailed description of the electronic properties, chemical state, and structure of uniform single and few-layered graphene oxide (GO) thin films at different stages of reduction is reported in this paper.
Abstract: A detailed description of the electronic properties, chemical state, and structure of uniform single and few-layered graphene oxide (GO) thin films at different stages of reduction is reported. The residual oxygen content and structure of GO are monitored and these chemical and structural characteristics are correlated to electronic properties of the thin films at various stages of reduction. It is found that the electrical characteristics of reduced GO do not approach those of intrinsic graphene obtained by mechanical cleaving because the material remains significantly oxidized. The residual oxygen forms sp3 bonds with carbon atoms in the basal plane such that the carbon sp2 bonding fraction in fully reduced GO is ∼0.80. The minority sp3 bonds disrupt the transport of carriers delocalized in the sp2 network, limiting the mobility, and conductivity of reduced GO thin films. Extrapolation of electrical conductivity data as a function of oxygen content reveals that complete removal of oxygen should lead to properties that are comparable to graphene.

1,646 citations

Journal Article
TL;DR: A speech processing algorithm was developed to create more salient versions of the rapidly changing elements in the acoustic waveform of speech that have been shown to be deficiently processed by language-learning impaired (LLI) children.
Abstract: A speech processing algorithm was developed to create more salient versions of the rapidly changing elements in the acoustic waveform of speech that have been shown to be deficiently processed by language-learning impaired (LLI) children. LLI children received extensive daily training, over a 4-week period, with listening exercises in which all speech was translated into this synthetic form. They also received daily training with computer "games" designed to adaptively drive improvements in temporal processing thresholds. Significant improvements in speech discrimination and language comprehension abilities were demonstrated in two independent groups of LLI children.

1,209 citations

Journal ArticleDOI
05 Jan 1996-Science
TL;DR: A speech processing algorithm was developed to create more salient versions of the rapidly changing elements in the acoustic waveform of speech that have been shown to be deficiently processed by language-learning impaired (LLI) children as discussed by the authors.
Abstract: A speech processing algorithm was developed to create more salient versions of the rapidly changing elements in the acoustic waveform of speech that have been shown to be deficiently processed by language-learning impaired (LLI) children. LLI children received extensive daily training, over a 4-week period, with listening exercises in which all speech was translated into this synthetic form. They also received daily training with computer "games" designed to adaptively drive improvements in temporal processing thresholds. Significant improvements in speech discrimination and language comprehension abilities were demonstrated in two independent groups of LLI children.

1,160 citations

Journal ArticleDOI
TL;DR: The results of this detailed analysis reveal that the GO is rough with an average surface roughness of 0.6 nm and the structure is predominantly amorphous due to distortions from sp3 C-O bonds.
Abstract: We elucidate the atomic and electronic structure of graphene oxide (GO) using annular dark field imaging of single and multilayer sheets and electron energy loss spectroscopy for measuring the fine structure of C and O K-edges in a scanning transmission electron microscope. Partial density of states and electronic plasma excitations are also measured for these GO sheets showing unusual π* + σ* excitation at 19 eV. The results of this detailed analysis reveal that the GO is rough with an average surface roughness of 0.6 nm and the structure is predominantly amorphous due to distortions from sp3 C−O bonds. Around 40% sp3 bonding was found to be present in these sheets with measured O/C ratio of 1:5. These sp2 to sp3 bond modifications due to oxidation are also supported by ab initio calculations.

1,070 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present evidence supporting the hypothesis that a basic temporal processing impairment in language-impaired children underlies their inability to integrate sensory information that converges in rapid succession in the central nervous system.
Abstract: In this paper we present evidence supporting the hypothesis that a basic temporal processing impairment in language-impaired children underlies their inability to integrate sensory information that converges in rapid succession in the central nervous system. We provide data showing that this deficit is pansensory; that is, affects processing in multiple sensory modalities, and also affects motor output within the millisecond time frame. We also provide data that links these basic temporal integration deficits to specific patterns of speech perception and speech production deficits in language-impaired children. We suggest that these basic temporal deficits cause a cascade of effects starting with disruption of the normal development of an otherwise effective and efficient phonological system. We propose further that these phonological processing deficits result in subsequent failure to learn to speak and to read normally. That is, both the language and reading problems have their basis in deficiently esta...

951 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
22 Jul 2010-ACS Nano
TL;DR: An improved method for the preparation of graphene oxide (GO) is described, finding that excluding the NaNO(3), increasing the amount of KMnO(4), and performing the reaction in a 9:1 mixture of H(2)SO(4)/H(3)PO(4) improves the efficiency of the oxidation process.
Abstract: An improved method for the preparation of graphene oxide (GO) is described. Currently, Hummers’ method (KMnO4, NaNO3, H2SO4) is the most common method used for preparing graphene oxide. We have found that excluding the NaNO3, increasing the amount of KMnO4, and performing the reaction in a 9:1 mixture of H2SO4/H3PO4 improves the efficiency of the oxidation process. This improved method provides a greater amount of hydrophilic oxidized graphene material as compared to Hummers’ method or Hummers’ method with additional KMnO4. Moreover, even though the GO produced by our method is more oxidized than that prepared by Hummers’ method, when both are reduced in the same chamber with hydrazine, chemically converted graphene (CCG) produced from this new method is equivalent in its electrical conductivity. In contrast to Hummers’ method, the new method does not generate toxic gas and the temperature is easily controlled. This improved synthesis of GO may be important for large-scale production of GO as well as the ...

9,812 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal Article
TL;DR: For example, this paper pointed out that students are no longer the people our educational system was designed to teach, and that a really big discontinuity has taken place in the last decades of the 20th century.
Abstract: It is amazing to me how in all the hoopla and debate these days about the decline of education in the US we ignore the most fundamental of its causes. Our students have changed radically. Today’s students are no longer the people our educational system was designed to teach. Today’s students have not just changed incrementally from those of the past, nor simply changed their slang, clothes, body adornments, or styles, as has happened between generations previously. A really big discontinuity has taken place. One might even call it a “singularity” – an event which changes things so fundamentally that there is absolutely no going back. This so-called “singularity” is the arrival and rapid dissemination of digital technology in the last decades of the 20 th century.

7,973 citations

Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations