scispace - formally typeset
Search or ask a question
Author

Steven Bass

Bio: Steven Bass is an academic researcher. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 1, co-authored 1 publications receiving 1699 citations.
Topics: Gene, Genome, Plasmid, Vibrio cholerae, El Tor

Papers
More filters
Journal ArticleDOI
03 Aug 2000-Nature
TL;DR: The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.
Abstract: Here we determine the complete genomic sequence of the Gram negative, g-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the g-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.

1,785 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing, which are probably important driving forces in the evolution and speciation of vibrios.
Abstract: Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years.

1,136 citations

Journal ArticleDOI
TL;DR: RyhB provides a mechanism for the cell to down-regulate iron-storage proteins and nonessential ironcontaining proteins when iron is limiting, thus modulating intracellular iron usage to supplement mechanisms for iron uptake directly regulated by Fur.
Abstract: A small RNA, RyhB, was found as part of a genomewide search for novel small RNAs in Escherichia coli. The RyhB 90-nt RNA down-regulates a set of iron-storage and iron-using proteins when iron is limiting; it is itself negatively regulated by the ferric uptake repressor protein, Fur (Ferric uptake regulator). RyhB RNA levels are inversely correlated with mRNA levels for the sdhCDAB operon, encoding succinate dehydrogenase, as well as five other genes previously shown to be positively regulated by Fur by an unknown mechanism. These include two other genes encoding enzymes in the tricarboxylic acid cycle, acnA and fumA, two ferritin genes, ftnA and bfr, and a gene for superoxide dismutase, sodB. Fur positive regulation of all these genes is fully reversed in an ryhB mutant. Our results explain the previously observed inability of fur mutants to grow on succinate. RyhB requires the RNA-binding protein, Hfq, for activity. Sequences within RyhB are complementary to regions within each of the target genes, suggesting that RyhB acts as an antisense RNA. In sdhCDAB, the complementary region is at the end of the first gene of the sdhCDAB operon; full-length sdhCDAB message disappears and a truncated message, equivalent in size to the region upstream of the complementarity, is detected when RyhB is expressed. RyhB provides a mechanism for the cell to down-regulate iron-storage proteins and nonessential ironcontaining proteins when iron is limiting, thus modulating intracellular iron usage to supplement mechanisms for iron uptake directly regulated by Fur.

1,096 citations

Journal ArticleDOI
TL;DR: Recent lessons that have been learned from pathogenicity islands in pathogenic microorganisms are discussed and how they apply to the role of genomic islands in commensal, symbiotic and environmental bacteria are discussed.
Abstract: Horizontal gene transfer is an important mechanism for the evolution of microbial genomes. Pathogenicity islands — mobile genetic elements that contribute to rapid changes in virulence potential — are known to have contributed to genome evolution by horizontal gene transfer in many bacterial pathogens. Increasing evidence indicates that equivalent elements in non-pathogenic species — genomic islands — are important in the evolution of these bacteria, influencing traits such as antibiotic resistance, symbiosis and fitness, and adaptation in general. This review discusses the recent lessons that have been learned from pathogenicity islands in pathogenic microorganisms and how they apply to the role of genomic islands in commensal, symbiotic and environmental bacteria.

1,007 citations

Journal ArticleDOI
Didier Mazel1
TL;DR: The basic biology of integrons and superintegrons, their evolutionary history and the evidence for the existence of a novel recombination pathway is reviewed.
Abstract: Integrons are assembly platforms that incorporate exogenous open reading frames through site-specific recombination and convert them to functional genes by ensuring their correct expression. Here, Didier Mazel reviews the biology of integrons and superintegrons and their evolutionary history, and proposes a new model to account for the peculiarities of the integron recombination pathway. Integrons are assembly platforms — DNA elements that acquire open reading frames embedded in exogenous gene cassettes and convert them to functional genes by ensuring their correct expression. They were first identified by virtue of their important role in the spread of antibiotic-resistance genes. More recently, our understanding of their importance in bacterial genome evolution has broadened with the discovery of larger integron structures, termed superintegrons. These DNA elements contain hundreds of accessory genes and constitute a significant fraction of the genomes of many bacterial species. Here, the basic biology of integrons and superintegrons, their evolutionary history and the evidence for the existence of a novel recombination pathway is reviewed.

969 citations

Journal ArticleDOI
09 Jul 2004-Cell
TL;DR: It is proposed that Hfq, together with four candidate sRNAs, creates an ultrasensitive regulatory switch that controls the critical transition into the high cell density, quorum-sensing mode.

953 citations