scispace - formally typeset
Search or ask a question
Author

Steven Bills

Bio: Steven Bills is an academic researcher from Stanford University. The author has contributed to research in topics: Supervised learning & Relationship extraction. The author has an hindex of 1, co-authored 1 publications receiving 2550 citations.

Papers
More filters
Proceedings ArticleDOI
02 Aug 2009
TL;DR: This work investigates an alternative paradigm that does not require labeled corpora, avoiding the domain dependence of ACE-style algorithms, and allowing the use of corpora of any size.
Abstract: Modern models of relation extraction for tasks like ACE are based on supervised learning of relations from small hand-labeled corpora. We investigate an alternative paradigm that does not require labeled corpora, avoiding the domain dependence of ACE-style algorithms, and allowing the use of corpora of any size. Our experiments use Freebase, a large semantic database of several thousand relations, to provide distant supervision. For each pair of entities that appears in some Freebase relation, we find all sentences containing those entities in a large unlabeled corpus and extract textual features to train a relation classifier. Our algorithm combines the advantages of supervised IE (combining 400,000 noisy pattern features in a probabilistic classifier) and unsupervised IE (extracting large numbers of relations from large corpora of any domain). Our model is able to extract 10,000 instances of 102 relations at a precision of 67.6%. We also analyze feature performance, showing that syntactic parse features are particularly helpful for relations that are ambiguous or lexically distant in their expression.

2,965 citations


Cited by
More filters
01 Jan 2009
TL;DR: This report provides a general introduction to active learning and a survey of the literature, including a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date.
Abstract: The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns. An active learner may pose queries, usually in the form of unlabeled data instances to be labeled by an oracle (e.g., a human annotator). Active learning is well-motivated in many modern machine learning problems, where unlabeled data may be abundant or easily obtained, but labels are difficult, time-consuming, or expensive to obtain. This report provides a general introduction to active learning and a survey of the literature. This includes a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date. An analysis of the empirical and theoretical evidence for successful active learning, a summary of problem setting variants and practical issues, and a discussion of related topics in machine learning research are also presented.

5,227 citations

Proceedings Article
27 Jul 2014
TL;DR: This paper proposes TransH which models a relation as a hyperplane together with a translation operation on it and can well preserve the above mapping properties of relations with almost the same model complexity of TransE.
Abstract: We deal with embedding a large scale knowledge graph composed of entities and relations into a continuous vector space. TransE is a promising method proposed recently, which is very efficient while achieving state-of-the-art predictive performance. We discuss some mapping properties of relations which should be considered in embedding, such as reflexive, one-to-many, many-to-one, and many-to-many. We note that TransE does not do well in dealing with these properties. Some complex models are capable of preserving these mapping properties but sacrifice efficiency in the process. To make a good trade-off between model capacity and efficiency, in this paper we propose TransH which models a relation as a hyperplane together with a translation operation on it. In this way, we can well preserve the above mapping properties of relations with almost the same model complexity of TransE. Additionally, as a practical knowledge graph is often far from completed, how to construct negative examples to reduce false negative labels in training is very important. Utilizing the one-to-many/many-to-one mapping property of a relation, we propose a simple trick to reduce the possibility of false negative labeling. We conduct extensive experiments on link prediction, triplet classification and fact extraction on benchmark datasets like WordNet and Freebase. Experiments show TransH delivers significant improvements over TransE on predictive accuracy with comparable capability to scale up.

2,835 citations

Proceedings Article
Yankai Lin1, Zhiyuan Liu1, Maosong Sun1, Yang Liu2, Xuan Zhu2 
25 Jan 2015
TL;DR: TransR is proposed to build entity and relation embeddings in separate entity space and relation spaces to build translations between projected entities and to evaluate the models on three tasks including link prediction, triple classification and relational fact extraction.
Abstract: Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and relations within the same semantic space. In fact, an entity may have multiple aspects and various relations may focus on different aspects of entities, which makes a common space insufficient for modeling. In this paper, we propose TransR to build entity and relation embeddings in separate entity space and relation spaces. Afterwards, we learn embeddings by first projecting entities from entity space to corresponding relation space and then building translations between projected entities. In experiments, we evaluate our models on three tasks including link prediction, triple classification and relational fact extraction. Experimental results show significant and consistent improvements compared to state-of-the-art baselines including TransE and TransH. The source code of this paper can be obtained from https://github.com/mrlyk423/relation_extraction.

2,823 citations

Journal ArticleDOI
TL;DR: This article provides a systematic review of existing techniques of Knowledge graph embedding, including not only the state-of-the-arts but also those with latest trends, based on the type of information used in the embedding task.
Abstract: Knowledge graph (KG) embedding is to embed components of a KG including entities and relations into continuous vector spaces, so as to simplify the manipulation while preserving the inherent structure of the KG. It can benefit a variety of downstream tasks such as KG completion and relation extraction, and hence has quickly gained massive attention. In this article, we provide a systematic review of existing techniques, including not only the state-of-the-arts but also those with latest trends. Particularly, we make the review based on the type of information used in the embedding task. Techniques that conduct embedding using only facts observed in the KG are first introduced. We describe the overall framework, specific model design, typical training procedures, as well as pros and cons of such techniques. After that, we discuss techniques that further incorporate additional information besides facts. We focus specifically on the use of entity types, relation paths, textual descriptions, and logical rules. Finally, we briefly introduce how KG embedding can be applied to and benefit a wide variety of downstream tasks such as KG completion, relation extraction, question answering, and so forth.

1,905 citations

Proceedings ArticleDOI
24 Aug 2014
TL;DR: The Knowledge Vault is a Web-scale probabilistic knowledge base that combines extractions from Web content (obtained via analysis of text, tabular data, page structure, and human annotations) with prior knowledge derived from existing knowledge repositories that computes calibrated probabilities of fact correctness.
Abstract: Recent years have witnessed a proliferation of large-scale knowledge bases, including Wikipedia, Freebase, YAGO, Microsoft's Satori, and Google's Knowledge Graph. To increase the scale even further, we need to explore automatic methods for constructing knowledge bases. Previous approaches have primarily focused on text-based extraction, which can be very noisy. Here we introduce Knowledge Vault, a Web-scale probabilistic knowledge base that combines extractions from Web content (obtained via analysis of text, tabular data, page structure, and human annotations) with prior knowledge derived from existing knowledge repositories. We employ supervised machine learning methods for fusing these distinct information sources. The Knowledge Vault is substantially bigger than any previously published structured knowledge repository, and features a probabilistic inference system that computes calibrated probabilities of fact correctness. We report the results of multiple studies that explore the relative utility of the different information sources and extraction methods.

1,657 citations