scispace - formally typeset
Search or ask a question
Author

Steven Carey

Bio: Steven Carey is an academic researcher from University of Rhode Island. The author has contributed to research in topics: Pyroclastic rock & Volcano. The author has an hindex of 46, co-authored 101 publications receiving 6854 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a theoretical model of clast fallout from convective eruption columns has been developed which quantifies how the maximum clast size dispersal is determined by column height and wind strength.
Abstract: A theoretical model of clast fallout from convective eruption columns has been developed which quantifies how the maximum clast size dispersal is determined by column height and wind strength. An eruption column consists of a buoyant convecting region which rises to a heightH B where the column density equals that of the atmosphere. AboveH B the column rises further to a heightH T due to excess momentum. BetweenH T andH B the column is forced laterally into the atmosphere to form an upper umbrella region. Within the eruption column, the vertical and horizontal velocity fields can be calculated from exprimental and theoretical studies and consideration of mass continuity. The centreline vertical velocity falls as a nearly linear function over most of the column's height and the velocity decreases as a gaussian function radially away from the centreline. Both column height and vertical velocity are strong functions of magma discharge rate. From calculations of the velocity field and the terminal fall velocity of clasts, a series of particle support envelopes has been constructed which represents positions where the column vertical velocity and terminal velocity are equal for a clast of specific size and density. The maximum range of a clast is determined in the absence of wind by the maximum width of the clast support envelope. The trajectories of clasts leaving their relevant support envelope at its maximum width have been modelled in columns from 6 to 43 km high with no wind and in a wind field. From these calculations the shapes and areas of maximum grain size contours of the air-fall deposit have been predicted. For the no wind case the theoretical isopleths show good agreement with the Fogo A plinian deposit in the Azores. A diagram has been constructed which plots, for a particular clast size, the maximum range normal to the dispersal axis against the downward range. From the diagram the column height (and hence magma discharge rate) and wind velocity can be determined. Historic plinian eruptions of Santa Maria (1902) and Mount St. Helens (1980) give maximum heights of 34 and 19 km respectively and maximum wind speeds at the tropopause of m/s and 30 m/s respectively. Both estimates are in good agreement with observations. The model has been applied to a number of other plinian deposits, including the ultraplinian phase of theA.D. 180 Taupo eruption in New Zealand which had an estimated column height of 51 km and wind velocity of 27 m/s.

627 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of 57 glass inclusions trapped in plagioclase phenocrysts in the light pumice showed little deviation from an average rhyodacitic composition (69.90±0.87 wt % SiO2) when special care was taken to account for Na loss during the analysis.
Abstract: The Mount St. Helens, May 18 pumice is a dacite containing 60% glass by weight and phenocrysts of plagioclase, orthopyroxene, amphibole, titaniferous magnetite, and ilmenite. The glass is uniform in composition, a rhyodacite with 73 wt % SiO2; the phenocrysts are also uniform in composition except for the plagioclase, which has cores averaging An57 and rims averaging An49. Analyses of seven pairs of coexisting Fe-Ti oxides in a representative sample of the light pumice were recast using various mineral calculation procedures; they yielded temperatures ranging from 920° to 940°C and a -log ƒO2 of 10.3–10.1. Electron microprobe analyses of 57 glass inclusions trapped in plagioclase phenocrysts in the light pumice showed little deviation from an average rhyodacitic composition (69.90±0.87 wt % SiO2) when special care was taken to account for Na loss during the analysis. The difference between the average total of these glass inclusion analyses and 100% is 4.6±1 wt %, which is interpreted to be volatiles dissolved in the glass. On an anhydrous basis the average glass inclusion composition is identical to the matrix glass, indicating that neither underwent significant fractionation after melt was trapped by the plagioclase. Experimentally determined phase relations for the representative dacite sample place limits on conditions in the May 18 Mount St. Helens magma chamber, assuming that the dissolved volatiles were 4.6±1 wt % and the temperature was 920°–940°C. Hydrothermal experiments over a range of P, T, and ƒO2 indicate that at no pressure is the observed phase assemblage and residual melt chemistry produced when PH2O = PTotal. Experiments using CO2-H2O fluids to achieve PH2's less than PFluid did reproduce the observed residual melt chemistry and an An50 plagioclase at a specific set of conditions, i.e., atƒO2's between the NNO and MNO buffers, at a PFluid of 220 MPa (2.2 kb), and at a PH2 = 110 MPa (all at 920°–940°C). Amphibole was not stable under these conditions but possibly would be if the PH2 / PFluid ratio was raised to 0.7 or if fluorine were added to the experimental system. It is concluded that just prior to eruption, the upper part of the Mount St. Helens magma chamber was at a pressure of 220±30 MPa corresponding to a depth of 7.2±1 km, PH2 was 0.5 to 0.7 PTotal, and the temperature was 930°±10°C.

362 citations

Journal ArticleDOI
TL;DR: In this paper, a computer simulation of ash fallout from an atmospherically dispersed eruption plume was developed to evaluate various hypotheses for the origin of the distal ash characteristics, particularly the thickness versus distance relationship.
Abstract: The May 18, 1980, eruption of Mount St. Helens (MSH) produced an extensive ashfall deposit in Washington, Idaho, and Montana with a minumum volume of 0.55 km3 (tephra). An unusual feature of the deposit is the occurrence of a second thickness maximum 325 km ENE of MSH near Ritzville, Washington. Grain size and component abundance analysis of samples along the main dispersal axis indicates that ash in this region is very fine grained (mean size, 22 μm), poorly sorted, polymodal, and rich in glass shards and pumice fragments. A computer simulation of ash fallout from an atmospherically dispersed eruption plume was developed to evaluate various hypotheses for the origin of the distal ash characteristics, particularly the thickness versus distance relationship. The model was constrained by observations of the eruption column height, elevation of major ash transport, lateral spreading of the eruption plume, and atmospheric wind structure in the vicinity of MSH. Results of different simulations indicate that the second thickness maximum cannot be attributed to either decreased wind velocities over central Washington or injection of fine ash above the horizontal wind velocity maximum near the tropopause. For the model to fit the observed characteristics of the deposit, significant particle aggregation of ash finer than 63 μm must be invoked. The best fit occurs when ash less than 63 μm is aggregated into particles several hundred microns in diameter with a settling velocity of 0.35 m/s. Support for this process comes from the observation and collection of fragile ash clusters of similar size which fell at Pullman, Washington, during the May 18 eruption (Sorem, 1982). The premature fallout of fine ash as particle aggregates is a fundamental process in the origin of the grain size characteristics, variations in component abundances, and thickness versus distance relationship of the May 18 MSH ash fall deposit.

333 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a model of pyroclast fallout from eruption columns to estimate peak intensities (magma discharge rate) of 45 Pleistocene and Holocene plinian eruptions.
Abstract: Peak intensities (magma discharge rate) of 45 Pleistocene and Holocene plinian eruptions have been inferred from lithic dispersal patterns by using a theoretical model of pyroclast fallout from eruption columns. Values range over three orders of magnitude from 1.6 × 106 to 1.1 × 109 kg/s. Magnitudes (total erupted mass) also vary over about three orders of magnitude from 2.0 × 1011 to 6.8 × 1014 kg and include several large ignimbrite-forming events with associated caldera formation. Intensity is found to be positively correlated with the magnitude when total erupted mass (tephra fall, surges and pyroclastic flows) is considered. Initial plinian fall phases with intensities in excess of 2.0 × 108 kg/s typically herald the onset of major pyroclastic flow generation and subsequent caldera collapse. During eruptions of large magnitude, the transition to pyroclastic flows is likely to be the result of high intensity, whereas the generation of pyroclastic flows in small magnitude eruptions may occur more often by reduction of magmatic volatile content or some transient change in magma properties. The correlation between plinian fall intensity and total magnitude suggests that the rate of magma discharge is related to the size of the chamber being tapped. A simple model is presented to account for the variation in intensity by progressive enlargement of conduits and vents and excess pressure at the chamber roof caused by buoyant forces acting on the chamber as it resides in the crust. Both processes are fundamentally linked to the absolute size of the pre-eruption reservoir. The data suggest that sustained eruption column heights (i.e. magma discharge rates) are indicators of eventual eruption magnitude, and perhaps eruptive style, and thus are key parameters to monitor in order to assess the temporal evolution of plinian eruptions.

247 citations

Journal ArticleDOI
TL;DR: This article studied soils on high-purity limestones of Quaternary age on the western Atlantic Ocean islands of Barbados, the Florida Keys, and the Bahamas and found that African dust is a significant contributor, and even Mississippi River valley loess may be a very minor contributor to Barbados soils.
Abstract: [1] We studied soils on high-purity limestones of Quaternary age on the western Atlantic Ocean islands of Barbados, the Florida Keys, and the Bahamas. Potential soil parent materials in this region, external to the carbonate substrate, include volcanic ash from the island of St. Vincent (near Barbados), volcanic ash from the islands of Dominica and St. Lucia (somewhat farther from Barbados), the fine-grained component of distal loess from the lower Mississippi River Valley, and wind-transported dust from Africa. These four parent materials can be differentiated using trace elements (Sc, Cr, Th, and Zr) and rare earth elements that have minimal mobility in the soil-forming environment. Barbados soils have compositions that indicate a complex derivation. Volcanic ash from the island of St. Vincent appears to have been the most important influence, but African dust is a significant contributor, and even Mississippi River valley loess may be a very minor contributor to Barbados soils. Soils on the Florida Keys and islands in the Bahamas appear to have developed mostly from African dust, but Mississippi River valley loess may be a significant contributor. Our results indicate that inputs of African dust are more important to the genesis of soils on islands in the western Atlantic Ocean than previously supposed. We hypothesize that African dust may also be a major contributor to soils on other islands of the Caribbean and to soils in northern South America, central America, Mexico, and the southeastern United States. Dust inputs to subtropical and tropical soils in this region increase both nutrient-holding capacity and nutrient status and thus may be critical in sustaining vegetation.

218 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, amphibole thermodynamics are approximated with the symmetric formalism (regular solution model for within-site non-ideality and a reciprocal solution for cross-site terms) in order to formulate improved thermometers for amphibole-plagioclase assemblages.
Abstract: Amphibole thermodynamics are approximated with the symmetric formalism (regular solution model for within-site non-ideality and a reciprocal solution model for cross-site-terms) in order to formulate improved thermometers for amphibole-plagioclase assemblages. This approximation provides a convenient framework with which to account for composition-dependence of the ideal (mixing-on-sites) equilibrium constants for the equilibria: For A and B all possible within-site and cross-site interactions among the species □−K−Na−Ca−Mg−Fe2+−Fe3+−Al−Si on the A, M4, M1, M3, M2 and T1 amphibole crystallographic sites were examined. Of the 36 possible interaction energy terms, application of the symmetric formalism results in a dramatic simplification to eight independent parameters. Plagioclase nonideality is modelled using Darken's quadratic formalism. We have supplemented an experimental data set of 92 amphibole-plagioclase pairs with 215 natural pairs from igneous and metamorphic rocks in which the pressure and temperature of equilibration are well constrained. Regression of the combined dataset yields values for the eight interaction parameters as well as for apparent enthalpy, entropy and volume changes for each reaction. These parameters are used to formulate two new thermometers, which perform well (±40°C) in the range 400–1000°C and 1–15 kbar over a broad range of bulk compositions, including tschermakitic amphiboles from garnet amphibolites which caused problems for the simple thermometer of Blundy and Holland (1990). For silica-saturated rocks both thermometers may be applied: in silica-undersaturated rocks or magmas thermometer B alone can be applied. An improved procedure for estimation of ferric iron in calcic amphiboles is presented in the appendix.

2,039 citations

Journal ArticleDOI
TL;DR: A review of existing geothermometers and geobarometers, and a presentation of approximately 30 new models, including a new plagioclase-liquid hygrometer, can be found in this paper.
Abstract: Knowledge of temperature and pressure, however qualitative, has been central to our views of geology since at least the early 19th century. In 1822, for example, Charles Daubeny presented what may be the very first “Geological Thermometer,” comparing temperatures of various geologic processes (Torrens 2006). Daubeny (1835) may even have been the first to measure the temperature of a lava flow, by laying a thermometer on the top of a flow at Vesuvius—albeit several months following the eruption, after intervening rain (his estimate was 390°F). In any case, pressure ( P ) and temperature ( T ) estimation lie at the heart of fundamental questions: How hot is Earth, and at what rate has the planet cooled. Are volcanoes the products of thermally driven mantle plumes? Where are magmas stored, and how are they transported to the surface—and how do storage and transport relate to plate tectonics? Well-calibrated thermometers and barometers are essential tools if we are to fully appreciate the driving forces and inner workings of volcanic systems. This chapter presents methods to estimate the P-T conditions of volcanic and other igneous processes. The coverage includes a review of existing geothermometers and geobarometers, and a presentation of approximately 30 new models, including a new plagioclase-liquid hygrometer. Our emphasis is on experimentally calibrated “thermobarometers,” based on analytic expressions using P or T as dependent variables. For numerical reasons (touched on below) such expressions will always provide the most accurate means of P-T estimation, and are also most easily employed. Analytical expressions also allow error to be ascertained; in the absence of estimates of error, P-T estimates are nearly meaningless. This chapter is intended to complement the chapters by Anderson et al. (2008), who cover granitic systems, and by Blundy and Cashman (2008) and Hansteen and Klugel (2008), who consider additional methods …

1,785 citations

Journal ArticleDOI
TL;DR: In this article, a model for the generation of intermediate and silicic igneous rocks is presented, based on experimental data and numerical modeling, which is directed at subduction-related magmatism, but has general applicability to magmas generated in other plate tectonic settings, including continental rift zones.
Abstract: A model for the generation of intermediate and silicic igneous rocks is presented, based on experimental data and numerical modelling. The model is directed at subduction-related magmatism, but has general applicability to magmas generated in other plate tectonic settings, including continental rift zones. In the model mantlederived hydrous basalts emplaced as a succession of sills into the lower crust generate a deep crustal hot zone. Numerical modelling of the hot zone shows that melts are generated from two distinct sources; partial crystallization of basalt sills to produce residual H2O-rich melts; and partial melting of pre-existing crustal rocks. Incubation times between the injection of the first sill and generation of residual melts from basalt crystallization are controlled by the initial geotherm, the magma input rate and the emplacement depth. After this incubation period, the melt fraction and composition of residual melts are controlled by the temperature of the crust into which the basalt is intruded. Heat and H2O transfer from the crystallizing basalt promote partial melting of the surrounding crust, which can include meta-sedimentary and meta-igneous basement rocks and earlier basalt intrusions. Mixing of residual and crustal partial melts leads to diversity in isotope and trace element chemistry. Hot zone melts are H2O-rich. Consequently, they have low viscosity and density, and can readily detach from their source and ascend rapidly. In the case of adiabatic ascent the magma attains a super-liquidus state, because of the relative slopes of the adiabat and the liquidus. This leads to resorption of any entrained crystals or country rock xenoliths. Crystallization begins only when the ascending magma intersects its H2O-saturated liquidus at shallow depths. Decompression and degassing are the driving forces behind crystallization, which takes place at shallow depth on timescales of decades or less. Degassing and crystallization at shallow depth lead to large increases in viscosity and stalling of the magma to form volcano-feeding magma chambers and shallow plutons. It is proposed that chemical diversity in arc magmas is largely acquired in the lower crust, whereas textural diversity is related to shallow-level crystallization.

1,547 citations

MonographDOI
09 Jan 2020
TL;DR: The third edition of the reference book as discussed by the authors has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results, and highlights applications in unconventional reservoirs, including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates.
Abstract: Responding to the latest developments in rock physics research, this popular reference book has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results. It brings together the vast literature from the field to address the relationships between geophysical observations and the underlying physical properties of Earth materials - including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates. This third edition includes expanded coverage of topics such as effective medium models, viscoelasticity, attenuation, anisotropy, electrical-elastic cross relations, and highlights applications in unconventional reservoirs. Appendices have been enhanced with new materials and properties, while worked examples (supplemented by online datasets and MATLAB® codes) enable readers to implement the workflows and models in practice. This significantly revised edition will continue to be the go-to reference for students and researchers interested in rock physics, near-surface geophysics, seismology, and professionals in the oil and gas industries.

1,387 citations

Journal ArticleDOI
TL;DR: The phase relations of natural aphyric high-alumina basalts and their intrusive equivalents were determined through rock-melting experiments at 2 kb, H2O-saturated with fO2 buffered at NNO.
Abstract: Phase relations of natural aphyric high-alumina basalts and their intrusive equivalents were determined through rock-melting experiments at 2 kb, H2O-saturated with fO2 buffered at NNO. Experimental liquids are low-MgO high-alumina basalt or basaltic andesite, and most are saturated with olivine, calcic plagioclase, and either high-calcium pyroxene or hornblende (±magnetite). Cr-spinel or magnetite appear near the liquidus of wet high-alumina basalts because H2O lowers the appearance temperature of crystalline silicates but has a lesser effect on spinel. As a consequence, experimental liquids follow calcalkaline differentiation trends. Hornblende stability is sensitive to the Na2O content of the bulk composition as well as to H2O content, with the result that hornblende can form as a near liquidus mineral in wet sodic basalts, but does not appear until liquids reach andesitic compositions in moderate Na2O basalts. Therefore, the absence of hornblende in basalts with low-to-moderate Na2O contents is not evidence that those basalts are nearly dry. Very calcic plagioclase (>An90) forms from basaltic melts with high H2O contents but cannot form from dry melts with normal are Na2O and CaO abundances. The presence of anorthite-rich plagioclase in high-alumina basalts indicates high magmatic H2O contents. In sum, moderate pressure H2O-saturated phase relations show that magmatic H2O leads to the early crystallization of spinel, produces calcic plagioclase, and reduces the total proportion of plagioclase in the crystallizing assemblage, thereby promoting the development of the calc-alkaline differentiation trend.

1,315 citations