scispace - formally typeset
Search or ask a question
Author

Steven Cunnington

Bio: Steven Cunnington is an academic researcher from Queen Mary University of London. The author has contributed to research in topics: Intensity mapping & Multipole expansion. The author has an hindex of 8, co-authored 18 publications receiving 321 citations. Previous affiliations of Steven Cunnington include Institute of Cosmology and Gravitation, University of Portsmouth.

Papers
More filters
Journal ArticleDOI
TL;DR: A detailed overview of the cosmological surveys that will be carried out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable can be found in this article.
Abstract: We present a detailed overview of the cosmological surveys that will be carried out with Phase 1 of the Square Kilometre Array (SKA1), and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5,000 sqdeg; a wide and deep continuum galaxy and HI intensity mapping survey over 20,000 sqdeg from z = 0.35 - 3; and a deep, high-redshift HI intensity mapping survey over 100 sqdeg from z = 3 - 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to z ~ 3 with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to z = 6. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical surveys like LSST and Euclid, leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys, and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.

226 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a population of double and quadruple image systems with ellipsoidal powerlaw density profiles and found that the typical density profile slopes of monitorable lenses are significantly shallower than the input ensemble.
Abstract: Inferring cosmological parameters from time-delay strong lenses requires a significant investment of telescope time; it is therefore tempting to focus on the systems with the brightest sources, the highest image multiplicities and the widest image separations. We investigate if this selection bias can influence the properties of the lenses studied and the cosmological parameters that are inferred. Using a population of lenses with ellipsoidal powerlaw density profiles, we build a sample of double and quadruple image systems. Assuming reasonable thresholds on image separation and flux, based on current lens monitoring campaigns, we find that the typical density profile slopes of monitorable lenses are significantly shallower than the input ensemble. From a sample of quadruple image lenses we find that this selection function can introduce a 3.5% bias on the inferred time-delay distances if the ensemble of deflector properties is used as a prior for a cosmographical analysis. This bias remains at the 2.4% level when high resolution imaging of the quasar host is used to precisely infer the density profiles of individual lenses. We also investigate if the lines-of-sight for monitorable strong lenses are biased. After adding external convergence, $\kappa$, and shear to our lens population we find that the expectation value for $\kappa$ is increased by 0.004 and 0.009 for doubles and quads respectively. $\kappa$ is degenerate with the value of $H_0$ inferred from time delays; fortunately the shift in $\kappa$ only induces a 0.9 (0.4) percent bias on $H_0$ for quads (doubles). We therefore conclude that whilst the properties of typical quasar lenses and their lines-of-sight do deviate from the global population, the total magnitude of this effect is likely a subdominant effect for current analyses, but has the potential to be a major systematic for samples of $\sim$25 or more lenses.

49 citations

Journal ArticleDOI
TL;DR: In this article, the authors calibrate dual-polarization autocorrelation data from 64 MeerKAT dishes in the L-band (856-1712 MHz, 4096 channels) with 10.5 hours of data retained from six nights of observing.
Abstract: While most purpose-built 21cm intensity mapping experiments are close-packed interferometer arrays, general-purpose dish arrays should also be capable of measuring the cosmological 21cm signal. This can be achieved most efficiently if the array is used as a collection of scanning autocorrelation dishes rather than as an interferometer. As a first step towards demonstrating the feasibility of this observing strategy, we show that we are able to successfully calibrate dual-polarisation autocorrelation data from 64 MeerKAT dishes in the L-band (856-1712 MHz, 4096 channels), with 10.5 hours of data retained from six nights of observing. We describe our calibration pipeline, which is based on multi-level RFI flagging, periodic noise diode injection to stabilise gain drifts and an absolute calibration based on a multi-component sky model. We show that it is sufficiently accurate to recover maps of diffuse celestial emission and point sources over a 10 deg x 30 deg patch of the sky overlapping with the WiggleZ 11hr field. The reconstructed maps have a good level of consistency between per-dish maps and external datasets, with the estimated thermal noise limited to 1.4 x the theoretical noise level (~ 2 mK). The residual maps have rms amplitudes below 0.1 K, corresponding to <1% of the model temperature. The reconstructed Galactic HI intensity map shows excellent agreement with the Effelsberg-Bonn HI Survey, and the flux of the radio galaxy 4C+03.18 is recovered to within 3.6%, which demonstrates that the autocorrelation can be successfully calibrated to give the zero-spacing flux and potentially help in the imaging of MeerKAT interferometric data. Our results provide a positive indication towards the feasibility of using MeerKAT and the future SKA to measure the HI intensity mapping signal and probe cosmology on degree scales and above.

45 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the impact of 21cm foreground clean on the cross-correlations with spectroscopic optical surveys with well-constrained redshifts and found that a redshift uncertainty σ_z ≥ 0.04 causes significant degradation in the cross power spectrum signal.
Abstract: The future of precision cosmology could benefit from cross-correlations between intensity maps of unresolved neutral hydrogen (H i) and more conventional optical galaxy surveys. A major challenge that needs to be overcome is removing the 21cm foreground emission that contaminates the cosmological H i signal. Using N-body simulations, we simulate H i intensity maps and optical catalogues that share the same underlying cosmology. Adding simulated foreground contamination and using state-of-the-art reconstruction techniques, we investigate the impacts that 21cm foregrounds and other systematics have on these cross-correlations. We find that the impact a Fast Independent Component Analysis 21cm foreground clean has on the cross-correlations with spectroscopic optical surveys with well-constrained redshifts is minimal. However, problems arise when photometric surveys are considered: We find that a redshift uncertainty σ_z ≥ 0.04 causes significant degradation in the cross-power spectrum signal. We diagnose the main root of these problems, which relates to arbitrary amplitude changes along the line of sight in the intensity maps caused by the foreground clean and suggest solutions that should be applicable to real data. These solutions involve a reconstruction of the line-of-sight temperature means using the available overlapping optical data along with an artificial extension to the H i data through redshift to address edge effects. We then put these solutions through a further test in a mock experiment that uses a clustering-based redshift estimation technique to constrain the photometric redshifts of the optical sample. We find that with our suggested reconstruction, cross-correlations can be utilized to make an accurate prediction of the optical redshift distribution.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a range of simulated foreground data from four different sky regions, with and without effects from polarization leakage, and analyze the contribution from foreground residuals.
Abstract: The success of HI intensity mapping is largely dependent on how well 21cm foreground contamination can be controlled. In order to progress our understanding further, we present a range of simulated foreground data from four different $\sim3000$\,deg$^2$ sky regions, with and without effects from polarization leakage. Combining these with underlying cosmological HI simulations creates a range of single-dish intensity mapping test cases that require different foreground treatments. This allows us to conduct the most generalized study to date into 21cm foregrounds and their cleaning techniques for the post-reionization era. We first provide a pedagogical review of the most commonly used blind foreground removal techniques (PCA/SVD, FASTICA, GMCA). We also trial a non-blind parametric fitting technique and discuss potential hybridization of methods. We highlight the similarities and differences in these techniques finding that the blind methods produce near equivalent results, and we explain the fundamental reasons for this. The simulations allow an exact decomposition of the resulting cleaned data and we analyse the contribution from foreground residuals. Our results demonstrate that polarized foreground residuals should be generally subdominant to HI on small scales ($k\gtrsim0.1\,h\,\text{Mpc}^{-1}$). However, on larger scales, results are more region dependent. In some cases, aggressive cleans severely damp HI power but still leave dominant foreground residuals. We also demonstrate the gain from cross-correlations with optical galaxy surveys, where extreme levels of residual foregrounds can be circumvented. However, these residuals still contribute to errors and we discuss the optimal balance between over- and under-cleaning.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a measurement of the Hubble constant and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays.
Abstract: We present a measurement of the Hubble constant ($H_{0}$) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat $\Lambda$CDM cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}$, a 2.4% precision measurement, in agreement with local measurements of $H_{0}$ from type Ia supernovae calibrated by the distance ladder, but in $3.1\sigma$ tension with $Planck$ observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in $5.3\sigma$ tension with $Planck$ CMB determinations of $H_{0}$ in flat $\Lambda$CDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat $\Lambda$CDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from $Planck$, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with $Planck$. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our $H_0$ inference to cosmological model assumptions. For six different cosmological models, our combined inference on $H_{0}$ ranges from $\sim73$-$78~\mathrm{km~s^{-1}~Mpc^{-1}}$, which is consistent with the local distance ladder constraints.

875 citations

Journal ArticleDOI
TL;DR: The H0LiCOW (H-0 Lenses in COSMOGRAIL's Wellspring) project as mentioned in this paper is a program that aims to measure H-0 with <3.5 per cent uncertainty from five lens systems (B1608+ 656, RXJ1131-1231, HE 0435-1223, WFI2033-4723 and HE 1104-1805).
Abstract: Strong gravitational lens systems with time delays between the multiple images allow measurements of time-delay distances, which are primarily sensitive to the Hubble constant that is key to probing dark energy, neutrino physics and the spatial curvature of the Universe, as well as discovering new physics. We present H0LiCOW (H-0 Lenses in COSMOGRAIL's Wellspring), a program that aims to measure H-0 with <3.5 per cent uncertainty from five lens systems (B1608+ 656, RXJ1131-1231, HE 0435-1223, WFI2033-4723 and HE 1104-1805). We have been acquiring (1) time delays through COSMOGRAIL and Very Large Array monitoring, (2) high-resolution Hubble Space Telescope imaging for the lens mass modelling, (3) wide-field imaging and spectroscopy to characterize the lens environment and (4) moderate-resolution spectroscopy to obtain the stellar velocity dispersion of the lenses for mass modelling. In cosmological models with one-parameter extension to flat Lambda cold dark matter, we expect to measure H-0 to <3.5 per cent in most models, spatial curvature Omega(k) to 0.004, w to 0.14 and the effective number of neutrino species to 0.2 (1s uncertainties) when combined with current cosmic microwave background (CMB) experiments. These are, respectively, a factor of similar to 15, similar to 2 and similar to 1.5 tighter than CMB alone. Our data set will further enable us to study the stellar initial mass function of the lens galaxies, and the co-evolution of supermassive black holes and their host galaxies. This program will provide a foundation for extracting cosmological distances from the hundreds of time-delay lenses that are expected to be discovered in current and future surveys.

335 citations

Journal ArticleDOI
TL;DR: In this paper , the authors focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements and discuss the importance of trying to fit a full array of data with a single model.

335 citations

01 Jan 1947
TL;DR: This chapter discusses Statistical Training and Curricular Revision, which aims to provide a history of the discipline and some of the techniques used to train teachers.
Abstract: Statistical Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 124, 254, 297 History Corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20, 179 Teacher’s Corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 173, 263, 335 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 147, 211, 366 Statistical Computing and Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Statistical Computing and Software Reviews . . . . . . . . . . . . . . . . . . . . . . . . 75, 187 Reviews of Books and Teaching Materials . . . . . . . . . . . . . . . . . 92, 189, 281, 401 Brief Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100, 195, 292, 404 Letters to the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102, 197, 294, 406 Special Section: Statistical Training and Curricular Revision . . . . . . . . . . . . . 105 Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Special Section: Opportunities and Challenges for the Discipline . . . . . . . . . 201 Software Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

318 citations

Journal ArticleDOI
TL;DR: AION (Atom Interferometer Observatory and Network) as mentioned in this paper is a proposed UK-based experimental program using cold strontium atoms to search for ultra-light dark matter, to explore gravitational waves in the mid-frequency range between the peak sensitivities of the LISA and LIGO/Virgo/ KAGRA/INDIGO-Einstein Telescope/Cosmic Explorer experiments, and to probe other frontiers in fundamental physics.
Abstract: We outline the experimental concept and key scientific capabilities of AION (Atom Interferometer Observatory and Network), a proposed UK-based experimental programme using cold strontium atoms to search for ultra-light dark matter, to explore gravitational waves in the mid-frequency range between the peak sensitivities of the LISA and LIGO/Virgo/ KAGRA/INDIGO/Einstein Telescope/Cosmic Explorer experiments, and to probe other frontiers in fundamental physics. AION would complement other planned searches for dark matter, as well as probe mergers involving intermediate mass black holes and explore early universe cosmology. AION would share many technical features with the MAGIS experimental programme in the US, and synergies would flow from operating AION in a network with this experiment, as well as with other atom interferometer experiments such as MIGA, ZAIGA and ELGAR. Operating AION in a network with other gravitational wave detectors such as LIGO, Virgo and LISA would also offer many synergies.

256 citations