scispace - formally typeset
Search or ask a question
Author

Steven D. Zaugg

Other affiliations: Denver Federal Center
Bio: Steven D. Zaugg is an academic researcher from United States Geological Survey. The author has contributed to research in topics: Wastewater & Water quality. The author has an hindex of 32, co-authored 55 publications receiving 15762 citations. Previous affiliations of Steven D. Zaugg include Denver Federal Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 organic wastewater contaminants (OWCs) in water samples from a network of 139 streams across 30 states during 1999 and 2000 as mentioned in this paper.
Abstract: To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other organic wastewater contaminants (OWCs) in water resources, the U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 OWCs in water samples from a network of 139 streams across 30 states during 1999 and 2000. The selection of sampling sites was biased toward streams susceptible to contamination (i.e. downstream of intense urbanization and livestock production). OWCs were prevalent during this study, being found in 80% of the streams sampled. The compounds detected represent a wide range of residential, industrial, and agricultural origins and uses with 82 of the 95 OWCs being found during this study. The most frequently detected compounds were coprostanol (fecal steroid), cholesterol (plant and animal steroid), N,N-diethyltoluamide (insect repellant), caffeine (stimulant), triclosan (antimicrobial disinfectant), tri(2-chloroethyl)phosphate (fire retardant), and 4-nonylphenol (nonionic detergent metabolite). Measured concentrations for this study were generally low and rarely exceeded drinking-water guidelines, drinking-water health advisories, or aquatic-life criteria. Many compounds, however, do not have such guidelines established. The detection of multiple OWCs was common for this study, with a median of seven and as many as 38 OWCs being found in a given water sample. Little is known about the potential interactive effects (such as synergistic or antagonistic toxicity) that may occur from complex mixtures of OWCs in the environment. In addition, results of this study demonstrate the importance of obtaining data on metabolites to fully understand not only the fate and transport of OWCs in the hydrologic system but also their ultimate overall effect on human health and the environment.

7,036 citations

Journal ArticleDOI
TL;DR: This study provides the first documentation that many of the organic wastewater-related contaminants that represent a diverse group of extensively used chemicals can survive conventional water-treatment processes and occur in potable-water supplies.

1,009 citations

Journal ArticleDOI
TL;DR: Data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States.

801 citations

Journal ArticleDOI
TL;DR: Water samples were collected from a network of 47 groundwater sites across 18 states in 2000 and detections of some OWCs could have resulted from leaching of well-construction materials and/or other site-specific conditions related to well construction and materials.

700 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 organic wastewater contaminants (OWCs) in water samples from a network of 139 streams across 30 states during 1999 and 2000 as mentioned in this paper.
Abstract: To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other organic wastewater contaminants (OWCs) in water resources, the U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 OWCs in water samples from a network of 139 streams across 30 states during 1999 and 2000. The selection of sampling sites was biased toward streams susceptible to contamination (i.e. downstream of intense urbanization and livestock production). OWCs were prevalent during this study, being found in 80% of the streams sampled. The compounds detected represent a wide range of residential, industrial, and agricultural origins and uses with 82 of the 95 OWCs being found during this study. The most frequently detected compounds were coprostanol (fecal steroid), cholesterol (plant and animal steroid), N,N-diethyltoluamide (insect repellant), caffeine (stimulant), triclosan (antimicrobial disinfectant), tri(2-chloroethyl)phosphate (fire retardant), and 4-nonylphenol (nonionic detergent metabolite). Measured concentrations for this study were generally low and rarely exceeded drinking-water guidelines, drinking-water health advisories, or aquatic-life criteria. Many compounds, however, do not have such guidelines established. The detection of multiple OWCs was common for this study, with a median of seven and as many as 38 OWCs being found in a given water sample. Little is known about the potential interactive effects (such as synergistic or antagonistic toxicity) that may occur from complex mixtures of OWCs in the environment. In addition, results of this study demonstrate the importance of obtaining data on metabolites to fully understand not only the fate and transport of OWCs in the hydrologic system but also their ultimate overall effect on human health and the environment.

7,036 citations

Journal ArticleDOI
TL;DR: This review brings up important questions that are still open, and addresses some significant issues which must be tackled in the future for a better understanding of the behavior of antibiotics in the environment, as well as the risks associated with their occurrence.

3,620 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined responses to land use under different management strategies and that employs response variables that have greater diagnostic value than many of the aggregated measures in current use.
Abstract: ▪ Abstract Local habitat and biological diversity of streams and rivers are strongly influenced by landform and land use within the surrounding valley at multiple scales. However, empirical associations between land use and stream response only varyingly succeed in implicating pathways of influence. This is the case for a number of reasons, including (a) covariation of anthropogenic and natural gradients in the landscape; (b) the existence of multiple, scale-dependent mechanisms; (c) nonlinear responses; and (d) the difficulties of separating present-day from historical influences. Further research is needed that examines responses to land use under different management strategies and that employs response variables that have greater diagnostic value than many of the aggregated measures in current use. In every respect, the valley rules the stream. H.B.N. Hynes (1975)

3,151 citations

Journal ArticleDOI
25 Aug 2006-Science
TL;DR: There are three scientific challenges in addressing water-quality problems caused by micropollutants, and usage and disposal strategies should aim to minimize introduction of critical pollutants into the aquatic environment.
Abstract: The increasing worldwide contamination of freshwater systems with thousands of industrial and natural chemical compounds is one of the key environmental problems facing humanity. Although most of these compounds are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Here we review three scientific challenges in addressing water-quality problems caused by such micropollutants. First, tools to assess the impact of these pollutants on aquatic life and human health must be further developed and refined. Second, cost-effective and appropriate remediation and water-treatment technologies must be explored and implemented. Third, usage and disposal strategies, coupled with the search for environmentally more benign products and processes, should aim to minimize introduction of critical pollutants into the aquatic environment.

2,951 citations

Journal ArticleDOI
TL;DR: This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water.

2,933 citations