scispace - formally typeset
Search or ask a question
Author

Steven E. Hyman

Bio: Steven E. Hyman is an academic researcher from Broad Institute. The author has contributed to research in topics: Regulation of gene expression & Gene expression. The author has an hindex of 63, co-authored 220 publications receiving 26320 citations. Previous affiliations of Steven E. Hyman include Massachusetts Institute of Technology & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: Progress in identifying candidate mechanisms of addiction is reviewed, including molecular and cellular mechanisms that underlie long-term associative memories in several forebrain circuits (involving the ventral and dorsal striatum and prefrontal cortex) that receive input from midbrain dopamine neurons.
Abstract: Addiction is a state of compulsive drug use; despite treatment and other attempts to control drug taking, addiction tends to persist. Clinical and laboratory observations have converged on the hypothesis that addiction represents the pathological usurpation of neural processes that normally serve reward-related learning. The major substrates of persistent compulsive drug use are hypothesized to be molecular and cellular mechanisms that underlie long-term associative memories in several forebrain circuits (involving the ventral and dorsal striatum and prefrontal cortex) that receive input from midbrain dopamine neurons. Here we review progress in identifying candidate mechanisms of addiction.

2,406 citations

Journal ArticleDOI
TL;DR: The current state of animal models of mental illness, with a focus on schizophrenia, depression and bipolar disorder, is reviewed and it is argued for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders.
Abstract: Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported.

1,765 citations

Journal ArticleDOI
06 Jul 2011-Nature
TL;DR: A consortium of researchers, advocates and clinicians announces here research priorities for improving the lives of people with mental illness around the world, and calls for urgent action and investment.
Abstract: A consortium of researchers, advocates and clinicians announces here research priorities for improving the lives of people with mental illness around the world, and calls for urgent action and investment.

1,726 citations

Journal ArticleDOI
01 Nov 1996-Neuron
TL;DR: The human amygdala responds preferentially to emotionally valenced faces and rapidly habituates to them and is counterbalanced to happy versus neutral faces, suggesting a possible generalized response to emotions valenced stimuli.

1,701 citations

Journal ArticleDOI
TL;DR: The HiTOP promises to improve research and clinical practice by addressing the aforementioned shortcomings of traditional nosologies and provides an effective way to summarize and convey information on risk factors, etiology, pathophysiology, phenomenology, illness course, and treatment response.
Abstract: The reliability and validity of traditional taxonomies are limited by arbitrary boundaries between psychopathology and normality, often unclear boundaries between disorders, frequent disorder co-occurrence, heterogeneity within disorders, and diagnostic instability. These taxonomies went beyond evidence available on the structure of psychopathology and were shaped by a variety of other considerations, which may explain the aforementioned shortcomings. The Hierarchical Taxonomy Of Psychopathology (HiTOP) model has emerged as a research effort to address these problems. It constructs psychopathological syndromes and their components/subtypes based on the observed covariation of symptoms, grouping related symptoms together and thus reducing heterogeneity. It also combines co-occurring syndromes into spectra, thereby mapping out comorbidity. Moreover, it characterizes these phenomena dimensionally, which addresses boundary problems and diagnostic instability. Here, we review the development of the HiTOP and the relevant evidence. The new classification already covers most forms of psychopathology. Dimensional measures have been developed to assess many of the identified components, syndromes, and spectra. Several domains of this model are ready for clinical and research applications. The HiTOP promises to improve research and clinical practice by addressing the aforementioned shortcomings of traditional nosologies. It also provides an effective way to summarize and convey information on risk factors, etiology, pathophysiology, phenomenology, illness course, and treatment response. This can greatly improve the utility of the diagnosis of mental disorders. The new classification remains a work in progress. However, it is developing rapidly and is poised to advance mental health research and care significantly as the relevant science matures. (PsycINFO Database Record

1,635 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The meaning of the terms "method" and "method bias" are explored and whether method biases influence all measures equally are examined, and the evidence of the effects that method biases have on individual measures and on the covariation between different constructs is reviewed.
Abstract: Despite the concern that has been expressed about potential method biases, and the pervasiveness of research settings with the potential to produce them, there is disagreement about whether they really are a problem for researchers in the behavioral sciences. Therefore, the purpose of this review is to explore the current state of knowledge about method biases. First, we explore the meaning of the terms “method” and “method bias” and then we examine whether method biases influence all measures equally. Next, we review the evidence of the effects that method biases have on individual measures and on the covariation between different constructs. Following this, we evaluate the procedural and statistical remedies that have been used to control method biases and provide recommendations for minimizing method bias.

8,719 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: The field of neuroscience has, after a long period of looking the other way, again embraced emotion as an important research area, and much of the progress has come from studies of fear, and especially fear conditioning as mentioned in this paper.
Abstract: The field of neuroscience has, after a long period of looking the other way, again embraced emotion as an important research area. Much of the progress has come from studies of fear, and especially fear conditioning. This work has pin- pointed the amygdala as an important component of the system involved in the acqui- sition, storage, and expression of fear memory and has elucidated in detail how stimuli enter, travel through, and exit the amygdala. Some progress has also been made in understanding the cellular and molecular mechanisms that underlie fear conditioning, and recent studies have also shown that the findings from experimental animals apply to the human brain. It is important to remember why this work on emotion succeeded where past efforts failed. It focused on a psychologically well-defined aspect of emo- tion, avoided vague and poorly defined concepts such as "affect," "hedonic tone," or "emotional feelings," and used a simple and straightforward experimental approach. With so much research being done in this area today, it is important that the mistakes of the past not be made again. It is also time to expand from this foundation into broader aspects of mind and behavior

7,347 citations

Journal ArticleDOI
TL;DR: The data allow us to reject alternative accounts of the function of the fusiform face area (area “FF”) that appeal to visual attention, subordinate-level classification, or general processing of any animate or human forms, demonstrating that this region is selectively involved in the perception of faces.
Abstract: Using functional magnetic resonance imaging (fMRI), we found an area in the fusiform gyrus in 12 of the 15 subjects tested that was significantly more active when the subjects viewed faces than when they viewed assorted common objects. This face activation was used to define a specific region of interest individually for each subject, within which several new tests of face specificity were run. In each of five subjects tested, the predefined candidate “face area” also responded significantly more strongly to passive viewing of (1) intact than scrambled two-tone faces, (2) full front-view face photos than front-view photos of houses, and (in a different set of five subjects) (3) three-quarter-view face photos (with hair concealed) than photos of human hands; it also responded more strongly during (4) a consecutive matching task performed on three-quarter-view faces versus hands. Our technique of running multiple tests applied to the same region defined functionally within individual subjects provides a solution to two common problems in functional imaging: (1) the requirement to correct for multiple statistical comparisons and (2) the inevitable ambiguity in the interpretation of any study in which only two or three conditions are compared. Our data allow us to reject alternative accounts of the function of the fusiform face area (area “FF”) that appeal to visual attention, subordinate-level classification, or general processing of any animate or human forms, demonstrating that this region is selectively involved in the perception of faces.

7,059 citations