scispace - formally typeset
Search or ask a question
Author

Steven F. Williams

Bio: Steven F. Williams is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Madden–Julian oscillation & Sea surface temperature. The author has an hindex of 5, co-authored 6 publications receiving 637 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The VAMOS(1) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific as discussed by the authors.
Abstract: The VAMOS(1) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument pay-loads and key mission strategies for these platforms and give a summary of the missions conducted.

280 citations

Journal ArticleDOI
TL;DR: The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave dynamics and effects from orographic and other sources to regions of dissipation at high altitudes as discussed by the authors.
Abstract: The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropson...

158 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first WAMME experiment and evaluated the performance of the WAMme general circulation models in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales.
Abstract: This paper briefly presents the West African Monsoon (WAM) Modeling and Evaluation Project (WAMME) and evaluates WAMME general circulation models’ (GCM) performances in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales in the first WAMME experiment. The analyses indicate that models with specified sea surface temperature generally have reasonable simulations of the pattern of spatial distribution of WAM seasonal mean precipitation and surface temperature as well as the averaged zonal wind in latitude-height cross-section and low level circulation. But there are large differences among models in simulating spatial correlation, intensity, and variance of precipitation compared with observations. Furthermore, the majority of models fail to produce proper intensities of the African Easterly Jet (AEJ) and the tropical easterly jet. AMMA Land Surface Model Intercomparison Project (ALMIP) data are used to analyze the association between simulated surface processes and the WAM and to investigate the WAM mechanism. It has been identified that the spatial distributions of surface sensible heat flux, surface temperature, and moisture convergence are closely associated with the simulated spatial distribution of precipitation; while surface latent heat flux is closely associated with the AEJ and contributes to divergence in AEJ simulation. Common empirical orthogonal functions (CEOF) analysis is applied to characterize the WAM precipitation evolution and has identified a major WAM precipitation mode and two temperature modes (Sahara mode and Sahel mode). Results indicate that the WAMME models produce reasonable temporal evolutions of major CEOF modes but have deficiencies/uncertainties in producing variances explained by major modes. Furthermore, the CEOF analysis shows that WAM precipitation evolution is closely related to the enhanced Sahara mode and the weakened Sahel mode, supporting the evidence revealed in the analysis using ALMIP data. An analysis of variability of CEOF modes suggests that the Sahara mode leads the WAM evolution, and divergence in simulating this mode contributes to discrepancies in the precipitation simulation.

136 citations

Journal ArticleDOI
TL;DR: The upper-air sounding network for Dynamics of the Madden-Julian Oscillation (DYNAMO) has provided an unprecedented set of observations for studying the MJO over the Indian Ocean, where coupling of this oscillation with deep convection first occurs as discussed by the authors.
Abstract: The upper-air sounding network for Dynamics of the Madden–Julian Oscillation (DYNAMO) has provided an unprecedented set of observations for studying the MJO over the Indian Ocean, where coupling of this oscillation with deep convection first occurs. With 72 rawinsonde sites and dropsonde data from 13 aircraft missions, the sounding network covers the tropics from eastern Africa to the western Pacific. In total nearly 26 000 soundings were collected from this network during the experiment’s 6-month extended observing period (from October 2011 to March 2012). Slightly more than half of the soundings, collected from 33 sites, are at high vertical resolution. Rigorous post–field phase processing of the sonde data included several levels of quality checks and a variety of corrections that address a number of issues (e.g., daytime dry bias, baseline surface data errors, ship deck heating effects, and artificial dry spikes in slow-ascent soundings).Because of the importance of an accurate description of ...

122 citations

Journal ArticleDOI
TL;DR: The T-28 armored research aircraft was developed beginning in 1968 with a grant from the National Science Foundation (NSF) to the South Dakota School of Mines and Technology (SDSMT).
Abstract: The T-28 armored research aircraft was developed beginning in 1968 with a grant from the National Science Foundation (NSF) to the South Dakota School of Mines and Technology (SDSMT). The modification of the stock military trainer was done under the direction of Paul MacCready with much of the engineering work performed by Robin Williamson. Once it went into service it was operated by the Institute of Atmospheric Sciences (IAS) at the SDSMT. From 1970 through 2003 it participated in regional, national and international convective storm research projects.

5 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2009-Nature
TL;DR: It is proposed that the difficulty in untangling relationships among the aerosol, clouds and precipitation reflects the inadequacy of existing tools and methodologies and a failure to account for processes that buffer cloud and precipitation responses to aerosol perturbations.
Abstract: It is thought that changes in the concentration of cloud-active aerosol can alter the precipitation efficiency of clouds, thereby changing cloud amount and, hence, the radiative forcing of the climate system. Despite decades of research, it has proved frustratingly difficult to establish climatically meaningful relationships among the aerosol, clouds and precipitation. As a result, the climatic effect of the aerosol remains controversial. We propose that the difficulty in untangling relationships among the aerosol, clouds and precipitation reflects the inadequacy of existing tools and methodologies and a failure to account for processes that buffer cloud and precipitation responses to aerosol perturbations.

964 citations

Journal ArticleDOI
TL;DR: The Global Atmosphere 3.0 (GA3.0) as mentioned in this paper is a configuration of the Met Office Unified Model (MetUM) developed for use across climate research and weather prediction activities.
Abstract: . We describe Global Atmosphere 3.0 (GA3.0): a configuration of the Met Office Unified Model (MetUM) developed for use across climate research and weather prediction activities. GA3.0 has been formulated by converging the development paths of the Met Office's weather and climate global atmospheric model components such that wherever possible, atmospheric processes are modelled or parametrized seamlessly across spatial resolutions and timescales. This unified development process will provide the Met Office and its collaborators with regular releases of a configuration that has been evaluated, and can hence be applied, over a variety of modelling regimes. We also describe Global Land 3.0 (GL3.0): a configuration of the JULES community land surface model developed for use with GA3.0. This paper provides a comprehensive technical and scientific description of the GA3.0 and GL3.0 (and related GA3.1 and GL3.1) configurations and presents the results of some initial evaluations of their performance in various applications. It is to be the first in a series of papers describing each subsequent Global Atmosphere release; this will provide a single source of reference for established users and developers as well as researchers requiring access to a current, but trusted, global MetUM setup.

803 citations

Journal ArticleDOI
TL;DR: In this article, an ensemble of regional climate simulations is analyzed to evaluate the ability of 10 regional climate models (RCMs) and their ensemble average to simulate precipitation over Africa, using a range of time scales, including seasonal means, and annual and diurnal cycles.
Abstract: An ensemble of regional climate simulations is analyzed to evaluate the ability of 10 regional climate models (RCMs) and their ensemble average to simulate precipitation over Africa. All RCMs use a similar domain and spatial resolution of ~50 km and are driven by the ECMWF Interim Re-Analysis (ERA-Interim) (1989–2008). They constitute the first set of simulations in the Coordinated Regional Downscaling Experiment in Africa (CORDEX-Africa) project. Simulated precipitation is evaluated at a range of time scales, including seasonal means, and annual and diurnal cycles, against a number of detailed observational datasets. All RCMs simulate the seasonal mean and annual cycle quite accurately, although individual models can exhibit significant biases in some subregions and seasons. The multimodel average generally outperforms any individual simulation, showing biases of similar magnitude to differences across a number of observational datasets. Moreover, many of the RCMs significantly improve the precip...

565 citations

Journal ArticleDOI
TL;DR: This work suggests strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.
Abstract: The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

475 citations

Journal ArticleDOI
TL;DR: In this paper, a new version of the atmospheric general circulation model of the Meteorological Research Institute (MRI), with a horizontal grid size of about 20 km, has been developed.
Abstract: A new version of the atmospheric general circulation model of the Meteorological Research Institute (MRI), with a horizontal grid size of about 20 km, has been developed. The previous version of the 20-km model, MRIAGCM3.1, which was developed from an operational numerical weather-prediction model, provided information on possible climate change induced by global warming, including future changes in tropical cyclones, the East Asian monsoon, extreme events, and blockings. For the new version, MRI-AGCM3.2, we have introduced various new parameterization schemes that improve the model climate. Using the new model, we performed a present-day climate experiment using observed sea surface temperature. The model shows improvements in simulating heavy monthly-mean precipitation around the tropical Western Pacific, the global distribution of tropical cyclones, the seasonal march of East Asian summer monsoon, and blockings in the Pacific. Improvements in the model climatologies were confirmed numerically using skill scores (e.g., Taylor’s skill score).

389 citations