scispace - formally typeset
Search or ask a question
Author

Steven G. Turowski

Bio: Steven G. Turowski is an academic researcher from Roswell Park Cancer Institute. The author has contributed to research in topics: Medicine & Photodynamic therapy. The author has an hindex of 11, co-authored 16 publications receiving 235 citations. Previous affiliations of Steven G. Turowski include State University of New York System.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article , the authors show that oncogenic KrasG12D increases IL-33 expression in pancreatic ductal adenocarcinoma (PDAC) cells, which recruits and activates TH2 and ILC2 cells.

62 citations

Journal ArticleDOI
TL;DR: This proof‐of‐principle study suggests that multimodal theranostic IT delivery approaches hold potential to both guide injections and interpret outcomes, in particular when combined with chemo‐phototherapy.
Abstract: Intratumoral (IT) drug injections reduce systemic toxicity, but delivered volumes and distribution can be inconsistent. To improve IT delivery paradigms, porphyrin-phospholipid (PoP) liposomes are passively loaded with three hydrophilic cargos: sulforhodamine B, a fluorophore; gadolinium-gadopentetic acid, a magnetic resonance (MR) agent; and oxaliplatin, a colorectal cancer chemotherapeutic. Liposome composition is optimized so that cargo is retained in serum and storage, but is released in less than 1 min with exposure to near infrared light. Light-triggered release occurs with PoP-induced photooxidation of unsaturated lipids and all cargos release concurrently. In subcutaneous murine colorectal tumors, drainage of released cargo is delayed when laser treatment occurs 24 h after IT injection, at doses orders of magnitude lower than systemic ones. Delayed light-triggering results in substantial tumor shrinkage relative to controls a week following treatment, although regrowth occurs subsequently. MR imaging reveals that over this time frame, pools of liposomes within the tumor migrate to adjacent regions, possibly leading to altered spatial distribution during triggered drug release. Although further characterization of cargo loading and release is required, this proof-of-principle study suggests that multimodal theranostic IT delivery approaches hold potential to both guide injections and interpret outcomes, in particular when combined with chemo-phototherapy.

45 citations

Journal ArticleDOI
TL;DR: A novel approach for the development of water-soluble "multifunctional agents", demonstrating efficacy for tumor imaging (MR and fluorescence) and phototherapy and toxicological evaluations of HPHH-3Gd(III)ADTPA administered at and above imaging/therapeutic doses did not show any evidence of organ toxicity.

42 citations

Journal ArticleDOI
TL;DR: It is shown that one member of a new class of high spin macrocyclic Fe(III) complexes produces more intense contrast in mice kidneys and liver at 30 minutes post injection than does a commercially used Gd( III) agent and also produces similar T1 relaxivity in serum phantoms at 4.7 T and 37 oC.
Abstract: Early studies suggested that FeIII complexes cannot compete with GdIII complexes as T1 MRI contrast agents. Now it is shown that one member of a class of high-spin macrocyclic FeIII complexes produces more intense contrast in mice kidneys and liver at 30 minutes post-injection than does a commercially used GdIII agent and also produces similar T1 relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIII macrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable-temperature 17 O NMR studies suggest that none of the complexes has a single, integral inner-sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIII complexes that correspond, in part, to their r1 relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.

40 citations

Journal ArticleDOI
TL;DR: In Photofrin®-mediated I-PDT, a selected range of irradiance prompts effective photoreaction with tissue heating in the treatment of locally advanced mouse tumour, resulting in significantly higher cure rate compared to light delivery alone at same irradiance and light dose.
Abstract: Currently delivered light dose (J/cm2) is the principal parameter guiding interstitial photodynamic therapy (I-PDT) of refractory locally advanced cancer. The aim of this study was to investigate the impact of light dose rate (irradiance, mW/cm2) and associated heating on tumour response and cure. Finite-element modeling was used to compute intratumoural irradiance and dose to guide Photofrin® I-PDT in locally advanced SCCVII in C3H mice and large VX2 neck tumours in New Zealand White rabbits. Light-induced tissue heating in mice was studied with real-time magnetic resonance thermometry. In the mouse model, cure rates of 70–90% were obtained with I-PDT using 8.4–245 mW/cm2 and ≥45 J/cm2 in 100% of the SCCVII tumour. Increasing irradiance was associated with increase in tissue heating. I-PDT with Photofrin® resulted in significantly (p < 0.05) higher cure rate compared to light delivery alone at same irradiance and light dose. Local control and/or cures of VX2 were obtained using I-PDT with 16.5–398 mW/cm2 and ≥45 J/cm2 in 100% of the tumour. In Photofrin®-mediated I-PDT, a selected range of irradiance prompts effective photoreaction with tissue heating in the treatment of locally advanced mouse tumour. These irradiances were translated for effective local control of large VX2 tumours.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work presents a new generation of high-performance liquid chromatography platforms for selective separation of Na6(CO3) from Na4(SO4) through Na2SO4 and shows real-world applications in drug discovery and treatment of central nervous system disorders.
Abstract: Diagnostics and Therapy Guanying Chen,‡,† Indrajit Roy,†,§ Chunhui Yang,*,‡ and Paras N. Prasad*,† †Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States ‡School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China Department of Chemistry, University of Delhi, Delhi 110007, India

1,123 citations

Journal ArticleDOI
TL;DR: Recent developments in the use of light-triggered theranostic agents for simultaneous imaging and photoactivation of therapeutic agents for several diseases are reviewed.

457 citations

Journal ArticleDOI
TL;DR: This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide).
Abstract: Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.

219 citations

Journal ArticleDOI
TL;DR: This work elaborate upon the major forms of dietary selenium compounds, their metabolic pathways, and their antioxidant and pro-oxidant potentials with emphasis on cytotoxic mechanisms.
Abstract: Selenium is generally known as an antioxidant due to its presence in selenoproteins as selenocysteine, but it is also toxic. The toxic effects of selenium are, however, strictly concentration and chemical species dependent. One class of selenium compounds is a potent inhibitor of cell growth with remarkable tumor specificity. These redox active compounds are pro-oxidative and highly cytotoxic to tumor cells and are promising candidates to be used in chemotherapy against cancer. Herein we elaborate upon the major forms of dietary selenium compounds, their metabolic pathways, and their antioxidant and pro-oxidant potentials with emphasis on cytotoxic mechanisms. Relative cytotoxicity of inorganic selenite and organic selenocystine compounds to different cancer cells are presented as evidence to our perspective. Furthermore, new novel classes of selenium compounds specifically designed to target tumor cells are presented and the potential of selenium in modern oncology is extensively discussed.

214 citations

Journal ArticleDOI
01 Jun 2018-Small
TL;DR: The recent progress of organic dye-based NPs for cancer phototheranostic applications is summarized, which extends the anticancer arsenal and holds promise for clinical uses in the near future.
Abstract: Phototheranostics, which simultaneously combines photodynamic and/or photothermal therapy with deep-tissue diagnostic imaging, is a promising strategy for the diagnosis and treatment of cancers. Organic dyes with the merits of strong near-infrared absorbance, high photo-to-radical and/or photothermal conversion efficiency, great biocompatibility, ready chemical structure fine-tuning capability, and easy metabolism, have been demonstrated as attractive candidates for clinical phototheranostics. These organic dyes can be further designed and fabricated into nanoparticles (NPs) using various strategies. Compared to free molecules, these NPs can be equipped with multiple synergistic functions and show longer lifetime in blood circulation and passive tumor-targeting property via the enhanced permeability and retention effect. In this article, the recent progress of organic dye-based NPs for cancer phototheranostic applications is summarized, which extends the anticancer arsenal and holds promise for clinical uses in the near future.

203 citations