scispace - formally typeset
Search or ask a question

Showing papers by "Steven H. Strogatz published in 1987"


Journal ArticleDOI
TL;DR: The temporal isolation data account quantitatively for the timing of the afternoon siesta and suggest that malfunctions of the phasing of the circadian pacemaker may underlie the insomnia associated with sleep-scheduling disorders.
Abstract: The human circadian pacemaker modulates our desire and ability to fall asleep at different times of day. To study this circadian component of sleep tendency, we have analyzed the sleep-wake patterns recorded from 15 free-running subjects in whom the sleep-wake cycle spontaneously desynchronized from the circadian rhythm of body temperature. The analysis indicates that the distribution of sleep onsets during free run is bimodal, with one peak at the temperature trough and, contrary to previous reports, a second peak 9-10 h later. Furthermore, there are two consistent zones in the circadian temperature cycle during which normal subjects rarely fall asleep. We hypothesize that this bimodal rhythm of sleep tendency, revealed under free-running conditions, maintains the same fixed phase relation to the circadian temperature cycle during 24-h entrainment. This would imply that normally entrained individuals should experience a peak of sleep tendency in the midafternoon and a zone of minimal sleep tendency approximately 1-3 h before habitual bedtime. Our temporal isolation data thereby account quantitatively for the timing of the afternoon siesta and suggest that malfunctions of the phasing of the circadian pacemaker may underlie the insomnia associated with sleep-scheduling disorders.

236 citations


Journal ArticleDOI
TL;DR: A model of the human circadian system is proposed, assumed to be driven by a pair of coupled nonlinear oscillators described by phase variables alone, that may be solved analytically.
Abstract: We propose a model of the human circadian system. The sleep-wake and body temperature rhythms are assumed to be driven by a pair of coupled nonlinear oscillators described by phase variables alone. The novel aspect of the model is that its equations may be solved analytically. Computer simulations are used to test the model against sleep-wake data pooled from 15 studies of subjects living for weeks in unscheduled, time-free environments. On these tests the model performs about as well as the existing models, although its mathematical structure is far simpler.

65 citations