scispace - formally typeset
Search or ask a question
Author

Steven H. Strogatz

Other affiliations: Boston College, Purdue University, Boston University  ...read more
Bio: Steven H. Strogatz is an academic researcher from Cornell University. The author has contributed to research in topics: Kuramoto model & Josephson effect. The author has an hindex of 79, co-authored 219 publications receiving 85750 citations. Previous affiliations of Steven H. Strogatz include Boston College & Purdue University.


Papers
More filters
Journal ArticleDOI
TL;DR: On analyse la dynamique de la transition de desancrage dans un modele a plusieurs corps du transport de l'onde de densite de charge dans les echantillons de commutation.
Abstract: On analyse la dynamique de la transition de desancrage dans un modele a plusieurs corps du transport de l'onde de densite de charge dans les echantillons de commutation. Le modele consiste en phases sans masse soumise avec un desancrage aleatoire et un terme de couplage periodique dans la difference de phase, permettant ainsi un glissement de phase. Les resultats numeriques concordent avec l'integration numerique des equations du modele

7 citations

Posted Content
TL;DR: In this article, the interplay between the memory immune response and pathogen mutation was studied in two related models: the first explicitly models pathogen mutations and individual memory immune responses, with contacted individuals becoming infected only if they are exposed to strains that are significantly different from other strains in their memory repertoire.
Abstract: We study how the interplay between the memory immune response and pathogen mutation affects epidemic dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune responses, with contacted individuals becoming infected only if they are exposed to strains that are significantly different from other strains in their memory repertoire. The second model is a reduction of the first to a system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune class. In both models, we observe four fundamentally different types of behavior, depending on parameters: (1) pathogen extinction due to lack of contact between individuals, (2) endemic infection, (3) periodic epidemic outbreaks, and (4) one or more outbreaks followed by extinction of the epidemic due to extremely low minima in the oscillations. We analyze both models to determine the location of each transition. Our main result is that pathogens in highly connected populations must mutate rapidly in order to remain viable.

7 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that introducing temporal variation in the network structure can lead to efficient synchronization even when stable synchrony is impossible in any static network under the given budget.
Abstract: Being fundamentally a non-equilibrium process, synchronization comes with unavoidable energy costs and has to be maintained under the constraint of limited resources. Such resource constraints are often reflected as a finite coupling budget available in a network to facilitate interaction and communication. Here, we show that introducing temporal variation in the network structure can lead to efficient synchronization even when stable synchrony is impossible in any static network under the given budget, thereby demonstrating a fundamental advantage of temporal networks. The temporal networks generated by our open-loop design are versatile in the sense of promoting synchronization for systems with vastly different dynamics, including periodic and chaotic dynamics in both discrete-time and continuous-time models. Furthermore, we link the dynamic stabilization effect of the changing topology to the curvature of the master stability function, which provides analytical insights into synchronization on temporal networks in general. In particular, our results shed light on the effect of network switching rate and explain why certain temporal networks synchronize only for intermediate switching rate. The ability of complex networks to synchronize themselves is limited by available coupling resources. Zhang and Strogatz show that allowing temporal variation in the network structure can lead to synchronization even when stable synchrony is impossible in any static network under the fixed budget.

7 citations

Journal ArticleDOI
07 Mar 2022-Chaos
TL;DR: In this paper , it was shown that p ≫ log ⁡ ( n ) / n suffices to achieve global synchrony in Erdős-Rényi random graphs.
Abstract: Consider n identical Kuramoto oscillators on a random graph. Specifically, consider Erdős-Rényi random graphs in which any two oscillators are bidirectionally coupled with unit strength, independently and at random, with probability 0 ≤ p ≤ 1. We say that a network is globally synchronizing if the oscillators converge to the all-in-phase synchronous state for almost all initial conditions. Is there a critical threshold for p above which global synchrony is extremely likely but below which it is extremely rare? It is suspected that a critical threshold exists and is close to the so-called connectivity threshold, namely, p ∼ log ⁡ ( n ) / n for n ≫ 1. Ling, Xu, and Bandeira made the first progress toward proving a result in this direction: they showed that if p ≫ log ⁡ ( n ) / n, then Erdős-Rényi networks of Kuramoto oscillators are globally synchronizing with high probability as n → ∞. Here, we improve that result by showing that p ≫ log ⁡ ( n ) / n suffices. Our estimates are explicit: for example, we can say that there is more than a 99.9996 % chance that a random network with n = 10 and p > 0.011 17 is globally synchronizing.

6 citations


Cited by
More filters
Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

39,297 citations

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations