scispace - formally typeset
Search or ask a question
Author

Steven Harden

Other affiliations: Cooperative Research Centre
Bio: Steven Harden is an academic researcher from New South Wales Department of Primary Industries. The author has contributed to research in topics: Pasture & Digitaria eriantha. The author has an hindex of 23, co-authored 73 publications receiving 1377 citations. Previous affiliations of Steven Harden include Cooperative Research Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: Results showed that addition of biochar, especially GWB, generated multiple benefits in composting of poultry litter: decrease of NH3 volatilisation, decrease in NH3 toxicity towards microorganisms, and improved N retention, thus enhancing the fertiliser value of the composted litter.

149 citations

Journal ArticleDOI
TL;DR: The results support the co-composting of biochar to lower net emissions of GHGs while increasing N retention (and fertiliser N value) in the mature compost.

100 citations

Journal ArticleDOI
TL;DR: Perennial legumes and herbs from 47 species in 21 genera were evaluated at sites in New South Wales, South Australia and Western Australia over 3 years from 2002 to 2005 to identify plants with superior herbage production, persistence and the potential to reduce ground water recharge.
Abstract: Ninety-one perennial legumes and herbs (entries) from 47 species in 21 genera were evaluated at sites in New South Wales, South Australia and Western Australia over 3 years from 2002 to 2005 to identify plants with superior herbage production, persistence and the potential to reduce ground water recharge. Evaluation was undertaken in three nurseries (general, waterlogged soil and acid soil). Medicago sativa L. subsp. sativa (lucerne) cv. Sceptre was the best performing species across all sites. In the general and acid soil nurseries, Cichorium intybus L. (chicory) cv. Grasslands Puna was the only species comparable with Sceptre lucerne in terms of persistence and herbage production. Trifolium fragiferum L. cv. Palestine and Lotus corniculatus L. SA833 were the best performing species on heavy clay soils prone to waterlogging. Three Dorycnium hirsutum (L.) Ser. accessions persisted well on acid soils, but were slow to establish. Short-lived perennial forage legumes, such as Onobrychis viciifolia Scop. cv. Othello, and three Hedysarum coronarium L. entries, including cv. Grasslands Aokou, had high herbage production in the first 2 years and may be suitable for short-term pastures in phased pasture-crop farming systems. T. uniflorum L. and M. sativa subsp. caerulea SA38052 were highly persistent and could play a role as companion species in mixtures or ground cover species for undulating landscapes. Cullen australasicum (Schltdl.) G.W. Grimes SA4966 and Lotononis bainesii Baker cv. Miles had poor establishment, but were persistent. Chicory, T. fragiferum and L. corniculatus were identified as species, other than lucerne, with the most immediate potential for further selection to increase the diversity of perennial legumes and herbs adapted to southern Australian environments.

92 citations

Journal ArticleDOI
TL;DR: In this article, the authors report short-term changes in soil carbon under zero tillage cropping systems and perennial vegetation, both in a replicated field experiment and on nearby farmers' paddocks, on carbon-depleted Black Vertosols in the upper Liverpool Plains catchment.
Abstract: Australian agriculture contributes an estimated 16% of all national greenhouse gas emissions, and considerable attention is now focused on management approaches that reduce net emissions. One area of potential is the modification of cropping practices to increase soil carbon storage. Here, we report short–medium term changes in soil carbon under zero tillage cropping systems and perennial vegetation, both in a replicated field experiment and on nearby farmers’ paddocks, on carbon-depleted Black Vertosols in the upper Liverpool Plains catchment. Soil organic carbon stocks (CS) remained unchanged under both zero tillage long fallow wheat–sorghum rotations and zero tillage continuous winter cereal in a replicated field experiment from 1994 to 2000. There was some evidence of accumulation of CS under intensive (>1 crop/year) zero tillage response cropping. There was significant accumulation of CS (~0.35 Mg/ha.year) under 3 types of perennial pasture, despite removal of aerial biomass with each harvest. Significant accumulation was detected in the 0–0.1, 0.1–0.2, and 0.2–0.4 m depth increments under lucerne and the top 2 increments under mixed pastures of lucerne and phalaris and of C3 and C4 perennial grasses. Average annual rainfall for the period of observations was 772 mm, greater than the 40-year average of 680 mm. A comparison of major attributes of cropping systems and perennial pastures showed no association between aerial biomass production and accumulation rates of CS but a positive correlation between the residence times of established plants and accumulation rates of CS. CS also remained unchanged (1998/2000–07) under zero tillage cropping on nearby farms, irrespective of paddock history before 1998/2000 (zero tillage cropping, traditional cropping, or ~10 years of sown perennial pasture). These results are consistent with previous work in Queensland and central western New South Wales suggesting that the climate (warm, semi-arid temperate, semi-arid subtropical) of much of the inland cropping country in eastern Australia is not conducive to accumulation of soil carbon under continuous cropping, although they do suggest that CS may accumulate under several years of healthy perennial pastures in rotation with zero tillage cropping.

69 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of land use (cultivation/native woodland/native pasture), litter type (above and below ground) and their interaction on the initial biochemical composition (carbon, nitrogen, water soluble carbon, lignin, tannin and cellulose) and decomposition of litter were determined.
Abstract: Understanding the interactions between the initial biochemical composition and subsequent decomposition of plant litter will improve our understanding of its influence on microbial substrate use to explain the flow of organic matter between soil carbon pools. We determined the effects of land use (cultivation/native woodland/native pasture), litter type (above and below ground) and their interaction on the initial biochemical composition (carbon, nitrogen, water soluble carbon, lignin, tannin and cellulose) and decomposition of litter. Litter decomposition was studied as the mineralization of C from litter by microbial respiration and was measured as CO2–C production during 105 d of laboratory incubation with soil. A two-pool model was used to quantify C mineralization kinetics. For all litter types, the active C pool decay rate constants ranged from 0.072 d−1 to 0.805 d−1 which represented relatively short half-lives of between 1 and 10 days, implying that this pool contained compounds that were rapidly mineralized by microbes during the initial stages of incubation. Conversely, the decay rate constants for the slow C pool varied widely between litter types within and among land uses ranging from 0.002 d−1 and 0.019 d−1 representing half-lives of between 37 and 446 days. In all litter types, the initial lignin:N ratio strongly and negatively influenced the decay rate of the slow C pool which implied that the interaction between these two litter quality variables had important controls over the decomposition of the litter slow C pool. We interpret our results to suggest that where the flow of C from the active pool to the slow pool is largely driven by microbial activity in soil, the rate of transfer of C will be largely controlled by the quality of litter under different land-use systems and particularly the initial lignin:N ratio of the litter. Compared with native pastures and cultivation, above and below ground litter from native woodland was characterized by higher lignin:N ratio and more slowly decomposing slow C pools which implies that litter is likely to persist in soils, however based on the sandy nature of the soils in this study, it is likely to lack protection from microbial degradation in the long term.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the current knowledge regarding the capacity of legumes to reduce the emissions of the key greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O) compared to N-fertilized systems was presented.
Abstract: Humans are currently confronted by many global challenges. These include achieving food security for a rapidly expanding population, lowering the risk of climate change by reducing the net release of greenhouse gases into the atmosphere due to human activity, and meeting the increasing demand for energy in the face of dwindling reserves of fossil energy and uncertainties about future reliability of supply. Legumes deliver several important services to societies. They provide important sources of oil, fiber, and protein-rich food and feed while supplying nitrogen (N) to agro-ecosystems via their unique ability to fix atmospheric N2 in symbiosis with the soil bacteria rhizobia, increasing soil carbon content, and stimulating the productivity of the crops that follow. However, the role of legumes has rarely been considered in the context of their potential to contribute to the mitigation of climate change by reducing fossil fuel use or by providing feedstock for the emerging biobased economies where fossil sources of energy and industrial raw materials are replaced in part by sustainable and renewable biomass resources. The aim of this review was to collate the current knowledge regarding the capacity of legumes to (1) lower the emissions of the key greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O) compared to N-fertilized systems, (2) reduce the fossil energy used in the production of food and forage, (3) contribute to the sequestration of carbon (C) in soils, and (4) provide a viable source of biomass for the generation of biofuels and other materials in future biorefinery concepts. We estimated that globally between 350 and 500 Tg CO2 could be emitted as a result of the 33 to 46 Tg N that is biologically fixed by agricultural legumes each year. This compares to around 300 Tg CO2 released annually from the manufacture of 100 Tg fertilizer N. The main difference is that the CO2 respired from the nodulated roots of N2-fixing legumes originated from photosynthesis and will not represent a net contribution to atmospheric concentrations of CO2, whereas the CO2 generated during the synthesis of N fertilizer was derived from fossil fuels. Experimental measures of total N2O fluxes from legumes and N-fertilized systems were found to vary enormously (0.03–7.09 and 0.09–18.16 kg N2O–N ha−1, respectively). This reflected the data being collated from a diverse range of studies using different rates of N inputs, as well as the large number of climatic, soil, and management variables known to influence denitrification and the portion of the total N lost as N2O. Averages across 71 site-years of data, soils under legumes emitted a total of 1.29 kg N2O–N ha−1 during a growing season. This compared to a mean of 3.22 kg N2O–N ha−1 from 67 site-years of N-fertilized crops and pastures, and 1.20 kg N2O–N ha−1 from 33 site-years of data collected from unplanted soils or unfertilized non-legumes. It was concluded that there was little evidence that biological N2 fixation substantially contributed to total N2O emissions, and that losses of N2O from legume soil were generally lower than N-fertilized systems, especially when commercial rates of N fertilizer were applied. Elevated rates of N2O losses can occur following the termination of legume-based pastures, or where legumes had been green- or brown-manured and there was a rapid build-up of high concentrations of nitrate in soil. Legume crops and legume-based pastures use 35% to 60% less fossil energy than N-fertilized cereals or grasslands, and the inclusion of legumes in cropping sequences reduced the average annual energy usage over a rotation by 12% to 34%. The reduced energy use was primarily due to the removal of the need to apply N fertilizer and the subsequently lower N fertilizer requirements for crops grown following legumes. Life cycle energy balances of legume-based rotations were also assisted by a lower use of agrichemicals for crop protection as diversification of cropping sequences reduce the incidence of cereal pathogens and pests and assisted weed control, although it was noted that differences in fossil energy use between legumes and N-fertilized systems were greatly diminished if energy use was expressed per unit of biomass or grain produced. For a change in land use to result in a net increase C sequestration in soil, the inputs of C remaining in plant residues need to exceed the CO2 respired by soil microbes during the decomposition of plant residues or soil organic C, and the C lost through wind or water erosion. The net N-balance of the system was a key driver of changes in soil C stocks in many environments, and data collected from pasture, cropping, and agroforestry systems all indicated that legumes played a pivotal role in providing the additional organic N required to encourage the accumulation of soil C at rates greater than can be achieved by cereals or grasses even when they were supplied with N fertilizer. Legumes contain a range of compounds, which could be refined to produce raw industrial materials currently manufactured from petroleum-based sources, pharmaceuticals, surfactants, or food additives as valuable by-products if legume biomass was to be used to generate biodiesel, bioethanol, biojet A1 fuel, or biogas. The attraction of using leguminous material feedstock is that they do not need the inputs of N fertilizer that would otherwise be necessary to support the production of high grain yields or large amounts of plant biomass since it is the high fossil energy use in the synthesis, transport, and application of N fertilizers that often negates much of the net C benefits of many other bioenergy sources. The use of legume biomass for biorefineries needs careful thought as there will be significant trade-offs with the current role of legumes in contributing to the organic fertility of soils. Agricultural systems will require novel management and plant breeding solutions to provide the range of options that will be required to mitigate climate change. Given their array of ecosystem services and their ability to reduce greenhouse gas emissions, lower the use of fossil energy, accelerate rates of C sequestration in soil, and provide a valuable source of feedstock for biorefineries, legumes should be considered as important components in the development of future agroecosystems.

578 citations

Journal ArticleDOI
TL;DR: Current knowledge about responses of tree roots to drought supports the view that tree roots are well equipped to withstand drought situations and maintain morphological and physiological functions as long as possible.
Abstract: The ongoing climate change is characterized by increased temperatures and altered precipitation patterns In addition, there has been an increase in both the frequency and intensity of extreme climatic events such as drought Episodes of drought induce a series of interconnected effects, all of which have the potential to alter the carbon balance of forest ecosystems profoundly at different scales of plant organization and ecosystem functioning During recent years, considerable progress has been made in the understanding of how aboveground parts of trees respond to drought and how these responses affect carbon assimilation In contrast, processes of belowground parts are relatively underrepresented in research on climate change In this review, we describe current knowledge about responses of tree roots to drought Tree roots are capable of responding to drought through a variety of strategies that enable them to avoid and tolerate stress Responses include root biomass adjustments, anatomical alterations, and physiological acclimations The molecular mechanisms underlying these responses are characterized to some extent, and involve stress signaling and the induction of numerous genes, leading to the activation of tolerance pathways In addition, mycorrhizas seem to play important protective roles The current knowledge compiled in this review supports the view that tree roots are well equipped to withstand drought situations and maintain morphological and physiological functions as long as possible Further, the reviewed literature demonstrates the important role of tree roots in the functioning of forest ecosystems and highlights the need for more research in this emerging field

501 citations

Journal ArticleDOI
TL;DR: Although the opportunity to abate livestock MPR by selection against RFI seems great, RFI explained only a small proportion of the observed variation in MPR, and the MPR:RFI(EBV) relationship will need to be defined over a range of diet types to account for this.
Abstract: Seventy-six Angus steers chosen from breeding lines divergently selected for residual feed intake (RFI) were studied to quantify the relationship between RFI and the daily rate of methane production (MPR). A 70-d feeding test using a barley-based ration was conducted in which the voluntary DMI, feeding characteristics, and BW of steers were monitored. The estimated breeding value (EBV) for RFI (RFI(EBV)) for each steer had been calculated from 70-d RFI tests conducted on its parents. Methane production rate (g/d) was measured on each steer using SF(6) as a tracer gas in a series of 10-d measurement periods. Daily DMI of steers was lower during the methane measurement period than when methane was not being measured (11.18 vs. 11.88 kg; P = 0.001). A significant relationship existed between MPR and RFI when RFI (RFI(15d)) was estimated over the 15 d when steers were harnessed for methane collection (MPR = 13.3 x RFI(15d) + 179; r(2) = 0.12; P = 0.01). Animals expressing lower RFI had lower daily MPR. The relationship established between MPR and RFI(15d) was used to calculate a reduction in daily methane emission of 13.38 g accompanied a 1 kg/d reduction in RFI(EBV) in cattle consuming ad libitum a diet of 12.1 MJ of ME/kg. The magnitude of this emission reduction was between that predicted on the basis of intake reduction alone (18 g x d(-1) x kg of DMI(-1)) and that predicted by a model incorporating steer midtest BW and level of intake relative to maintenance (5 g x d(-1) x kg of DMI(-1)). Comparison of data from steers exhibiting the greatest (n = 10) and lowest (n = 10) RFI(15d) showed the low RFI(15d) group to not only have lower MPR (P = 0.017) but also reduced methane cost of growth (by 41.2 g of CH(4)/kg of ADG; P = 0.09). Although the opportunity to abate livestock MPR by selection against RFI seems great, RFI explained only a small proportion of the observed variation in MPR. A genotype x nutrition interaction can be anticipated, and the MPR:RFI(EBV) relationship will need to be defined over a range of diet types to account for this.

416 citations

Journal ArticleDOI
TL;DR: The main benefits of the use of biochar in composting are reviewed, with special attention to those related to the process performance, compost microbiology, organic matter degradation and humification, reduction of N losses and greenhouse gas emissions and fate of heavy metals.

279 citations