scispace - formally typeset
Search or ask a question
Author

Steven J. Eppell

Bio: Steven J. Eppell is an academic researcher from Case Western Reserve University. The author has contributed to research in topics: Cantilever & Fibril. The author has an hindex of 22, co-authored 68 publications receiving 2725 citations. Previous affiliations of Steven J. Eppell include University of Wisconsin-Madison & Cleveland Clinic.


Papers
More filters
Journal ArticleDOI
15 Oct 1996-Blood
TL;DR: Shear stress-induced structural changes to vWF suggest a close conformation-function relationship in vWF properties for thrombogenesis in regions of high shear stress.

613 citations

Journal ArticleDOI
TL;DR: The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure.

298 citations

Journal ArticleDOI
TL;DR: A microelectromechanical systems device for directly measuring the tensile strength, stiffness and fatigue behaviour of nanoscale fibres is described and the first stress–strain curve of an isolated collagen fibril is obtained, producing the modulus and some fatigue properties of this soft nanofibril.
Abstract: The mechanical response of a biological material to applied forces reflects deformation mechanisms occurring within a hierarchical architecture extending over several distinct length scales. Characterizing and in turn predicting the behaviour of such a material requires an understanding of the mechanical properties of the substructures within the hierarchy, the interaction between the substructures, and the relative influence of each substructure on the overall behaviour. While significant progress has been made in mechanical testing of micrometre to millimetre sized biological specimens, quantitative reproducible experimental techniques for making mechanical measurements on specimens with characteristic dimensions in the smaller range of 10–1000 nm are lacking. Filling this void in experimentation is a necessary step towards the development of realistic multiscale computational models useful to predict and mitigate the risk of bone fracture, design improved synthetic replacements for bones, tendons and ligaments, and engineer bioinspired efficient and environmentally friendly structures. Here, we describe a microelectromechanical systems device for directly measuring the tensile strength, stiffness and fatigue behaviour of nanoscale fibres. We used the device to obtain the first stress–strain curve of an isolated collagen fibril producing the modulus and some fatigue properties of this soft nanofibril.

264 citations

Journal ArticleDOI
TL;DR: Stress-strain-time data indicate that isolated fibrils exhibit viscoelastic behavior that could be fitted using the Maxwell-Weichert model, and the only statistically significant difference found was that the elastic modulus is larger in the first test than in the subsequent two tests, indicating that viscous properties of collagen fibril are not sensitive to the history of previous tests.

248 citations

Journal ArticleDOI
TL;DR: Using atomic force microscopy, direct three‐dimensional visual evidence is obtained of the size and shape of native protein‐free mineralites isolated from mature bovine bone, providing more accurate inputs to molecular‐scale models aimed at predicting the physiological and mechanical behavior of bone.

217 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Monolayers of alkanethiolates on gold are probably the most studied SAMs to date and offer the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies.
Abstract: The field of self-assembled monolayers (SAMs) has witnessed tremendous growth in synthetic sophistication and depth of characterization over the past 15 years.1 However, it is interesting to comment on the modest beginning and on important milestones. The field really began much earlier than is now recognized. In 1946 Zisman published the preparation of a monomolecular layer by adsorption (self-assembly) of a surfactant onto a clean metal surface.2 At that time, the potential of self-assembly was not recognized, and this publication initiated only a limited level of interest. Early work initiated in Kuhn’s laboratory at Gottingen, applying many years of experience in using chlorosilane derivative to hydrophobize glass, was followed by the more recent discovery, when Nuzzo and Allara showed that SAMs of alkanethiolates on gold can be prepared by adsorption of di-n-alkyl disulfides from dilute solutions.3 Getting away from the moisture-sensitive alkyl trichlorosilanes, as well as working with crystalline gold surfaces, were two important reasons for the success of these SAMs. Many self-assembly systems have since been investigated, but monolayers of alkanethiolates on gold are probably the most studied SAMs to date. The formation of monolayers by self-assembly of surfactant molecules at surfaces is one example of the general phenomena of self-assembly. In nature, self-assembly results in supermolecular hierarchical organizations of interlocking components that provides very complex systems.4 SAMs offer unique opportunities to increase fundamental understanding of self-organization, structure-property relationships, and interfacial phenomena. The ability to tailor both head and tail groups of the constituent molecules makes SAMs excellent systems for a more fundamental understanding of phenomena affected by competing intermolecular, molecular-substrates and molecule-solvent interactions like ordering and growth, wetting, adhesion, lubrication, and corrosion. That SAMs are well-defined and accessible makes them good model systems for studies of physical chemistry and statistical physics in two dimensions, and the crossover to three dimensions. SAMs provide the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies. These studies may eventually produce the design capabilities needed for assemblies of three-dimensional structures.5 However, this will require studies of more complex systems and the combination of what has been learned from SAMs with macromolecular science. The exponential growth in SAM research is a demonstration of the changes chemistry as a disciAbraham Ulman was born in Haifa, Israel, in 1946. He studied chemistry in the Bar-Ilan University in Ramat-Gan, Israel, and received his B.Sc. in 1969. He received his M.Sc. in phosphorus chemistry from Bar-Ilan University in 1971. After a brief period in industry, he moved to the Weizmann Institute in Rehovot, Israel, and received his Ph.D. in 1978 for work on heterosubstituted porphyrins. He then spent two years at Northwestern University in Evanston, IL, where his main interest was onedimensional organic conductors. In 1985 he joined the Corporate Research Laboratories of Eastman Kodak Company, in Rochester, NY, where his research interests were molecular design of materials for nonlinear optics and self-assembled monolayers. In 1994 he moved to Polytechnic University where he is the Alstadt-Lord-Mark Professor of Chemistry. His interests encompass self-assembled monolayers, surface engineering, polymers at interface, and surfaces phenomena. 1533 Chem. Rev. 1996, 96, 1533−1554

7,465 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
TL;DR: Inhibitory antibodies against von Willebrand factor-cleaving protease occur in patients with acute thrombotic throm bocytopenic purpura, suggesting that a deficiency of this protease is likely to have a critical role in the pathogenesis of platelet thromBosis in this disease.
Abstract: Background Thrombotic thrombocytopenic purpura is a potentially fatal disease characterized by widespread platelet thrombi in the microcirculation. In the normal circulation, von Willebrand factor is cleaved by a plasma protease. We explored the hypothesis that a deficiency of this protease predisposes patients with thrombotic thrombocytopenic purpura to platelet thrombosis. Methods We studied the activity of von Willebrand factor–cleaving protease and sought inhibitors of this protease in plasma from patients with acute thrombotic thrombocytopenic purpura, patients with other diseases, and normal control subjects. We also investigated the effect of shear stress on the ristocetin cofactor activity of purified von Willebrand factor in the cryosupernatant fraction of the plasma samples. Results Thirty-nine samples of plasma from 37 patients with acute thrombotic thrombocytopenic purpura had severe deficiency of von Willebrand factor–cleaving protease. No deficiency was detected in 16 samples of plasma from ...

1,636 citations

Journal ArticleDOI
TL;DR: By understanding the multifaceted mechanisms involved in platelet interactions with vascular surfaces and aggregation, new approaches can be tailored to selectively inhibit the pathways most relevant to the pathological aspects of atherothrombosis.
Abstract: The participation of platelets in atherogenesis and the subsequent formation of occlusive thrombi depend on platelets' adhesive properties and the inability to respond to stimuli with rapid activation. By understanding the multifaceted mechanisms involved in platelet interactions with vascular surfaces and aggregation, new approaches can be tailored to selectively inhibit the pathways most relevant to the pathological aspects of atherothrombosis.

1,547 citations