scispace - formally typeset
Search or ask a question
Author

Steven J. Plimpton

Bio: Steven J. Plimpton is an academic researcher from Sandia National Laboratories. The author has contributed to research in topics: Parallel algorithm & Direct simulation Monte Carlo. The author has an hindex of 44, co-authored 128 publications receiving 62532 citations.


Papers
More filters
Proceedings ArticleDOI
01 Jul 2014
TL;DR: In the 50 years since its invention, the acceptance and applicability of the DSMC method have increased significantly, whereas the increase in computer speed has been the main factor behind its greater applicability.
Abstract: In the 50 years since its invention, the acceptance and applicability of the DSMC method have increased significantly. Extensive verification and validation efforts have led to its greater acceptance, whereas the increase in computer speed has been the main factor behind its greater applicability. As the performance of a single processor reaches its limit, massively parallel computing is expected to play an even stronger role in its future development.

124 citations

Journal ArticleDOI
TL;DR: In this article, a detailed circuit and device analysis of a training accelerator may serve as a foundation for further architecture-level studies, and the possible gains over a similar digital-only version of this accelerator block suggest that continued optimization of analog resistive memories is valuable.
Abstract: Neural networks are an increasingly attractive algorithm for natural language processing and pattern recognition. Deep networks with >50 M parameters are made possible by modern graphics processing unit clusters operating at $270\times $ energy and $540\times $ latency advantage over a similar block utilizing only digital ReRAM and takes only 11 fJ per multiply and accumulate. Compared with an SRAM-based accelerator, the energy is $430\times $ better and latency is $34\times $ better. Although training accuracy is degraded in the analog accelerator, several options to improve this are presented. The possible gains over a similar digital-only version of this accelerator block suggest that continued optimization of analog resistive memories is valuable. This detailed circuit and device analysis of a training accelerator may serve as a foundation for further architecture-level studies.

104 citations

Journal ArticleDOI
TL;DR: In this paper, simple shear molecular dynamics simulations using the embedded atom method (EAM) potentials were performed on single crystals and various parametric effects on the stress state and kinematics have been quantified.

103 citations

Journal ArticleDOI
TL;DR: NIMROD as discussed by the authors is a code development project designed to study long-wavelength, low-frequency, nonlinear phenomena in toroidal plasmas with realistic geometry and dynamics.
Abstract: NIMROD is a code development project designed to study long-wavelength, low-frequency, nonlinear phenomena in toroidal plasmas with realistic geometry and dynamics. The numerical challenges of solving the fluid equations for a fusion plasma are discussed and our discretization scheme is presented. Simulations of a resistive tearing mode show that time steps much greater than the Alfven time are possible without loss of accuracy. Validation tests of a resistive interchange mode in a shaped equilibrium, a ballooning mode and nonlinear activity in reversed-field pinches are described.

99 citations

Journal ArticleDOI
TL;DR: In this article, the thermal conductivity of polyethylene with molecular dynamics simulations is investigated. And the results are important for designing inexpensive high thermal-conductivity polymers, which gives rise to an interesting one-dimensional-to-three-dimensional transition in phonon transport.
Abstract: The thermal conductivity of nanostructures generally decreases with decreasing size because of classical size effects. The axial thermal conductivity of polymer chain lattices, however, can exhibit the opposite trend, because of reduced chain-chain anharmonic scattering. This unique feature gives rise to an interesting one-dimensional-to-three-dimensional transition in phonon transport. We study this transition by calculating the thermal conductivity of polyethylene with molecular dynamics simulations. The results are important for designing inexpensive high thermal-conductivity polymers.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, three parallel algorithms for classical molecular dynamics are presented, which can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors.

32,670 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules, and provides a rich set of calculation types.

12,985 citations