scispace - formally typeset
Search or ask a question
Author

Steven L. Girshick

Other affiliations: Stanford University
Bio: Steven L. Girshick is an academic researcher from University of Minnesota. The author has contributed to research in topics: Nucleation & Chemical vapor deposition. The author has an hindex of 36, co-authored 134 publications receiving 4532 citations. Previous affiliations of Steven L. Girshick include Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors extended Katz and Wiedersich's theory of homogeneous nucleation to derive a new expression for the rate of nucleation from an ideal supersaturated vapor.
Abstract: The ‘‘kinetic theory’’ of homogeneous nucleation developed by Katz and Wiedersich is extended to derive a new expression for the rate of nucleation from an ideal supersaturated vapor. Compared to the classical expression for the nucleation rate, the new expression has a slightly different dependence on supersaturation, and a substantially different dependence on temperature. A comparison of the new expression with experimental data on nucleation rates of several organic liquids indicates that in some but not all cases the new expression gives much closer agreement with the data than does the classical expression. Discrepancies between the theory and the data are ascribed mainly to the physical assumptions of the theory presented, which are the same as in the classical theory—particularly, that the physical properties of microscopic clusters are the same as those of the bulk liquid.

423 citations

Journal ArticleDOI
TL;DR: The fundamentals of nanocrystal formation in plasmas are discussed, practical implementations of plasma reactors are reviewed, the materials that have been produced with nonthermal plAsmas and surface chemistries that have be developed are surveyed, and an overview of applications of plasma-synthesized nanocrystals is provided.
Abstract: Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal pla...

292 citations

Journal ArticleDOI
TL;DR: In this article, a prediction of observed hardnesses in the range of 20 − 50 GPa was made based upon a proposed length scale related to the size of nanospheres in the 20−50 nm radii range.
Abstract: Successful deposition and mechanical probing of nearly spherical, defect-free silicon nanospheres has been accomplished. The results show silicon at this length scale to be up to four times harder than bulk silicon. Detailed measurements of plasticity evolution and the corresponding hardening response in normally brittle silicon is possible in these small volumes. Based upon a proposed length scale related to the size of nanospheres in the 20– 50 nm radii range, a prediction of observed hardnesses in the range of 20– 50 GPa is made. The ramifications of this to computational materials science studies on identical volumes are discussed.

215 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive chemical kinetic mechanism for silicon hydride cluster formation during silane pyrolysis is presented, which includes detailed chemical information about the relative stability and reactivity of different possible silicon hyddride clusters.
Abstract: Product contamination by particles nucleated within the processing environment often limits the deposition rate during chemical vapor deposition processes. A fundamental understanding of how these particles nucleate could allow higher growth rates while minimizing particle contamination. Here we present an extensive chemical kinetic mechanism for silicon hydride cluster formation during silane pyrolysis. This mechanism includes detailed chemical information about the relative stability and reactivity of different possible silicon hydride clusters. It provides a means of calculating a particle nucleation rate that can be used as the nucleation source term in aerosol dynamics models that predict particle formation, growth, and transport. A group additivity method was developed to estimate thermochemical properties of the silicon hydride clusters. Reactivity rules for the silicon hydride clusters were proposed based on the group additivity estimates for the reaction thermochemistry and the analogous reaction...

164 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe a process in which nanosize particles with u narrow size distribution are generated by expanding a thermal plasma carrying vapor-phase precursors through a nozzle.
Abstract: We describe a process in which nanosize particles with u narrow size distribution are generated by expanding a thermal plasma carrying vapor-phase precursors through a nozzle. The plasma temperature and velocity profiles are characterized by enthalpy probe measurements. by calorimetric energy balances. and by a model of the nozzle flow. Aerosol samples are extracted from the flow downstream of the nozzle by means of a capillary probe interfaced to a two-stage ejection diluter. The diluted aerosol is directed to a scanning electrical mobility spectrometer (SEMS) which provides on-line size distributions down to particle diameters of 4 nmt. We have generated silicon, carbon, and silicon carbide particles with number mean diameters of about 10 not or less, and we have obtained some correlations between the product and the operating conditions. Inspection of the size distributions obtained in the experiments, together with the modeling results, suggests that under our conditions silicon carbide formation is initiated by nucleation of extremely small silicon particles from supersaturated silicon vapor, followed by chemical reactions at the particle surfaces involving carbon-containing species from the gas phase.

155 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
TL;DR: A large-scale hierarchical bottom-up assembly route for the formation of Si on the nanoscale--containing rigid and robust spheres with irregular channels for rapid access of Li ions into the particle bulk.
Abstract: Si-based Li-ion battery anodes have recently received great attention, as they offer specific capacity an order of magnitude beyond that of conventional graphite. The applications of this transformative technology require synthesis routes capable of producing safe and easy-to-handle anode particles with low volume changes and stable performance during battery operation. Herein, we report a large-scale hierarchical bottom-up assembly route for the formation of Si on the nanoscale--containing rigid and robust spheres with irregular channels for rapid access of Li ions into the particle bulk. Large Si volume changes on Li insertion and extraction are accommodated by the particle's internal porosity. Reversible capacities over five times higher than that of the state-of-the-art anodes (1,950 mA h g(-1)) and stable performance are attained. The synthesis process is simple, low-cost, safe and broadly applicable, providing new avenues for the rational engineering of electrode materials with enhanced conductivity and power.

1,873 citations

Journal ArticleDOI
TL;DR: A detailed discussion of the strengths and limitations of the AMS measurement approach is presented and how the measurements are used to characterize particle properties are reviewed to highlight the different applications of this instrument.
Abstract: The application of mass spectrometric techniques to the realtime measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between similar to 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li(+) ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described. (c) 2007 Wiley Periodicals, Inc.

1,545 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examine the role played by the particle structure and morphology (size and shape), its chemical composition and oxidation state, and the effect of the cluster support.

957 citations