scispace - formally typeset
Search or ask a question
Author

Steven M. LaValle

Bio: Steven M. LaValle is an academic researcher from University of Oulu. The author has contributed to research in topics: Motion planning & Robot. The author has an hindex of 55, co-authored 220 publications receiving 22709 citations. Previous affiliations of Steven M. LaValle include Oculus VR & Stanford University.


Papers
More filters
Book
01 Jan 2006

4,417 citations

Journal Article
TL;DR: The Rapidly-exploring Random Tree (RRT) as discussed by the authors is a data structure designed for path planning problems with high degrees of freedom and non-holonomic constraints, including dynamics.
Abstract: We introduce the concept of a Rapidly-exploring Random Tree (RRT) as a randomized data structure that is designed for a broad class of path planning problems. While they share many of the bene cial properties of existing randomized planning techniques, RRTs are specifically designed to handle nonholonomic constraints (including dynamics) and high degrees of freedom. An RRT is iteratively expanded by applying control inputs that drive the system slightly toward randomly-selected points, as opposed to requiring point-to-point convergence, as in the probabilistic roadmap approach. Several desirable properties and a basic implementation of RRTs are discussed. To date, we have successfully applied RRTs to holonomic, nonholonomic, and kinodynamic planning problems of up to twelve degrees of freedom.

3,474 citations

Proceedings ArticleDOI
24 Apr 2000
TL;DR: A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces by incrementally building two rapidly-exploring random trees rooted at the start and the goal configurations.
Abstract: A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces. The method works by incrementally building two rapidly-exploring random trees (RRTs) rooted at the start and the goal configurations. The trees each explore space around them and also advance towards each other through, the use of a simple greedy heuristic. Although originally designed to plan motions for a human arm (modeled as a 7-DOF kinematic chain) for the automatic graphic animation of collision-free grasping and manipulation tasks, the algorithm has been successfully applied to a variety of path planning problems. Computed examples include generating collision-free motions for rigid objects in 2D and 3D, and collision-free manipulation motions for a 6-DOF PUMA arm in a 3D workspace. Some basic theoretical analysis is also presented.

3,102 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first randomized approach to kinodynamic planning (also known as trajectory planning or trajectory design), where the task is to determine control inputs to drive a robot from an unknown position to an unknown target.
Abstract: This paper presents the first randomized approach to kinodynamic planning (also known as trajectory planning or trajectory design). The task is to determine control inputs to drive a robot from an ...

2,993 citations

Proceedings ArticleDOI
10 May 1999
TL;DR: A state-space perspective on the kinodynamic planning problem is presented, and a randomized path planning technique that computes collision-free kinodynamic trajectories for high degree-of-freedom problems is introduced.
Abstract: The paper presents a state-space perspective on the kinodynamic planning problem, and introduces a randomized path planning technique that computes collision-free kinodynamic trajectories for high degree-of-freedom problems. By using a state space formulation, the kinodynamic planning problem is treated as a 2n-dimensional nonholonomic planning problem, derived from an n-dimensional configuration space. The state space serves the same role as the configuration space for basic path planning. The bases for the approach is the construction of a tree that attempts to rapidly and uniformly explore the state space, offering benefits that are similar to those obtained by successful randomized planning methods, but applies to a much broader class of problems. Some preliminary results are discussed for an implementation that determines the kinodynamic trajectories for hovercrafts and satellites in cluttered environments resulting in state spaces of up to twelve dimensions.

1,414 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Journal Article
TL;DR: The Rapidly-exploring Random Tree (RRT) as discussed by the authors is a data structure designed for path planning problems with high degrees of freedom and non-holonomic constraints, including dynamics.
Abstract: We introduce the concept of a Rapidly-exploring Random Tree (RRT) as a randomized data structure that is designed for a broad class of path planning problems. While they share many of the bene cial properties of existing randomized planning techniques, RRTs are specifically designed to handle nonholonomic constraints (including dynamics) and high degrees of freedom. An RRT is iteratively expanded by applying control inputs that drive the system slightly toward randomly-selected points, as opposed to requiring point-to-point convergence, as in the probabilistic roadmap approach. Several desirable properties and a basic implementation of RRTs are discussed. To date, we have successfully applied RRTs to holonomic, nonholonomic, and kinodynamic planning problems of up to twelve degrees of freedom.

3,474 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the asymptotic behavior of the cost of the solution returned by stochastic sampling-based path planning algorithms as the number of samples increases.
Abstract: During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g. as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g. showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.

3,438 citations

Proceedings ArticleDOI
24 Apr 2000
TL;DR: A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces by incrementally building two rapidly-exploring random trees rooted at the start and the goal configurations.
Abstract: A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces. The method works by incrementally building two rapidly-exploring random trees (RRTs) rooted at the start and the goal configurations. The trees each explore space around them and also advance towards each other through, the use of a simple greedy heuristic. Although originally designed to plan motions for a human arm (modeled as a 7-DOF kinematic chain) for the automatic graphic animation of collision-free grasping and manipulation tasks, the algorithm has been successfully applied to a variety of path planning problems. Computed examples include generating collision-free motions for rigid objects in 2D and 3D, and collision-free manipulation motions for a 6-DOF PUMA arm in a 3D workspace. Some basic theoretical analysis is also presented.

3,102 citations