scispace - formally typeset
Search or ask a question

Showing papers by "Steven P. Gygi published in 2010"


Journal ArticleDOI
23 Dec 2010-Cell
TL;DR: The data suggest that the "typical" phosphoprotein is widely expressed yet displays variable, often tissue-specific phosphorylation that tunes protein activity to the specific needs of each tissue, and is offered as an online resource for the biological research community.

1,520 citations


Journal ArticleDOI
01 Jul 2010-Nature
TL;DR: A global view of the mammalian autophagy interaction landscape is provided and a resource for mechanistic analysis of this critical protein homeostasis pathway is provided.
Abstract: Autophagy, the process by which proteins and organelles are sequestered in autophagosomal vesicles and delivered to the lysosome/vacuole for degradation, provides a primary route for turnover of stable and defective cellular proteins. Defects in this system are linked with numerous human diseases. Although conserved protein kinase, lipid kinase and ubiquitin-like protein conjugation subnetworks controlling autophagosome formation and cargo recruitment have been defined, our understanding of the global organization of this system is limited. Here we report a proteomic analysis of the autophagy interaction network in human cells under conditions of ongoing (basal) autophagy, revealing a network of 751 interactions among 409 candidate interacting proteins with extensive connectivity among subnetworks. Many new autophagy interaction network components have roles in vesicle trafficking, protein or lipid phosphorylation and protein ubiquitination, and affect autophagosome number or flux when depleted by RNA interference. The six ATG8 orthologues in humans (MAP1LC3/GABARAP proteins) interact with a cohort of 67 proteins, with extensive binding partner overlap between family members, and frequent involvement of a conserved surface on ATG8 proteins known to interact with LC3-interacting regions in partner proteins. These studies provide a global view of the mammalian autophagy interaction landscape and a resource for mechanistic analysis of this critical protein homeostasis pathway.

1,439 citations


Journal ArticleDOI
09 Sep 2010-Nature
TL;DR: It is shown that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin–protein conjugates both in vitro and in cells.
Abstract: Proteasomes, the primary mediators of ubiquitin-protein conjugate degradation, are regulated through complex and poorly understood mechanisms. Here we show that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin-protein conjugates both in vitro and in cells. A catalytically inactive variant of USP14 has reduced inhibitory activity, indicating that inhibition is mediated by trimming of the ubiquitin chain on the substrate. A high-throughput screen identified a selective small-molecule inhibitor of the deubiquitinating activity of human USP14. Treatment of cultured cells with this compound enhanced degradation of several proteasome substrates that have been implicated in neurodegenerative disease. USP14 inhibition accelerated the degradation of oxidized proteins and enhanced resistance to oxidative stress. Enhancement of proteasome activity through inhibition of USP14 may offer a strategy to reduce the levels of aberrant proteins in cells under proteotoxic stress.

802 citations


Journal ArticleDOI
25 Jun 2010-Cell
TL;DR: The BBSome constitutes a coat complex that sorts membrane proteins to primary cilia and it is proposed that trafficking of BBSome cargoes to cilia entails the coupling ofBBSome coat polymerization to the recognition of sorting signals by the BBSome.

570 citations


Book ChapterDOI
TL;DR: This work has shown that it is possible not only to estimate how many incorrect results are in a final data set but also to use decoy hits to guide the design of filtering criteria that sensitively partition a data set into correct and incorrect identifications.
Abstract: Accurate and precise methods for estimating incorrect peptide and protein identifications are crucial for effective large-scale proteome analyses by tandem mass spectrometry. The target-decoy search strategy has emerged as a simple, effective tool for generating such estimations. This strategy is based on the premise that obvious, necessarily incorrect “decoy” sequences added to the search space will correspond with incorrect search results that might otherwise be deemed to be correct. With this knowledge, it is possible not only to estimate how many incorrect results are in a final data set but also to use decoy hits to guide the design of filtering criteria that sensitively partition a data set into correct and incorrect identifications.

551 citations


Journal ArticleDOI
TL;DR: It is proposed that PARP sets up a transient repressive chromatin structure at sites of DNA damage to block transcription and facilitate DNA repair.
Abstract: Many proteins that respond to DNA damage are recruited to DNA lesions. We used a proteomics approach that coupled isotopic labeling with chromatin fractionation and mass spectrometry to uncover proteins that associate with damaged DNA, many of which are involved in DNA repair or nucleolar function. We show that polycomb group members are recruited by poly(ADP ribose) polymerase (PARP) to DNA lesions following UV laser microirradiation. Loss of polycomb components results in IR sensitivity of mammalian cells and Caenorhabditis elegans. PARP also recruits two components of the repressive nucleosome remodeling and deacetylase (NuRD) complex, chromodomain helicase DNA-binding protein 4 (CHD4) and metastasis associated 1 (MTA1), to DNA lesions. PARP plays a role in removing nascent RNA and elongating RNA polymerase II from sites of DNA damage. We propose that PARP sets up a transient repressive chromatin structure at sites of DNA damage to block transcription and facilitate DNA repair.

514 citations


Journal ArticleDOI
01 Oct 2010-Cell
TL;DR: The results demonstrate the existence of aneuploidy-tolerating mutations that improve the fitness of multiple different aneuPLoidies and highlight the importance of ubiquitin-proteasomal degradation in suppressing the adverse effects of anneuploids.

374 citations


Journal ArticleDOI
TL;DR: It is reported that the p38 MAPK pathway is required for normal skeletogenesis in mice, and an in vivo function for p38beta is revealed and it is established that MAPK signaling is essential for bone formation in vivo.
Abstract: Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway member–encoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-β–activated kinase 1 (TAK1; also known as MAP3K7) as the critical activator upstream of p38 in osteoblasts. Osteoblast-specific deletion of Tak1 resulted in clavicular hypoplasia and delayed fontanelle fusion, a phenotype similar to the cleidocranial dysplasia observed in humans haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2). Mechanistic analysis revealed that the TAK1–MKK3/6–p38 MAPK axis phosphorylated Runx2, promoting its association with the coactivator CREB-binding protein (CBP), which was required to regulate osteoblast genetic programs. These findings reveal an in vivo function for p38β and establish that MAPK signaling is essential for bone formation in vivo. These results also suggest that selective p38β agonists may represent attractive therapeutic agents to prevent bone loss associated with osteoporosis and aging.

345 citations


Journal ArticleDOI
10 Dec 2010-Cell
TL;DR: A quantitative proteomics platform centered on multiplex absolute quantification (AQUA) technology is reported to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling.

345 citations


Journal ArticleDOI
TL;DR: A phosphoproteomic approach to identify targets of three core signaling pathways—all of which involve activation of AGC family kinases—downstream of oncogenic RTKs is developed, revealing previously unidentified Akt–RSK–S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs.
Abstract: Receptor tyrosine kinases (RTKs) activate pathways mediated by serine-threonine kinases, such as the PI3K (phosphatidylinositol 3-kinase)-Akt pathway, the Ras-MAPK (mitogen-activated protein kinase)-RSK (ribosomal S6 kinase) pathway, and the mTOR (mammalian target of rapamycin)-p70 S6 pathway, that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmits signals by phosphorylating substrates on an RxRxxS/T motif (R, arginine; S, serine; T, threonine; and x, any amino acid). We developed a large-scale proteomic approach to identify more than 300 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor alpha (PDGFRalpha) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTK inhibitors (RTKIs), as well as by inhibitors of the PI3K, mTOR, and MAPK pathways, and we determined the effects of small interfering RNA directed against these substrates on cell viability. Phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) at serine-305 was essential for PDGFRalpha stabilization and cell survival in PDGFRalpha-dependent cancer cells. Our approach provides a new view of RTK and Akt-RSK-S6 kinase signaling, revealing previously unidentified Akt-RSK-S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs.

296 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Ydr049 (renamed VCP/Cdc48-associated mitochondrial stress-responsive--Vms1), a member of an unstudied pan-eukaryotic protein family, translocates from the cytosol to mitochondria upon mitochondrial stress.

Journal ArticleDOI
21 Jan 2010-Nature
TL;DR: In this article, a high-throughput mass spectrometry approach was used to search for cyclin D1-binding proteins in different mouse organs, including the Notch1 gene.
Abstract: Cyclin D1 belongs to the core cell cycle machinery, and it is frequently overexpressed in human cancers. The full repertoire of cyclin D1 functions in normal development and oncogenesis is unclear at present. Here we developed Flag- and haemagglutinin-tagged cyclin D1 knock-in mouse strains that allowed a high-throughput mass spectrometry approach to search for cyclin D1-binding proteins in different mouse organs. In addition to cell cycle partners, we observed several proteins involved in transcription. Genome-wide location analyses (chromatin immunoprecipitation coupled to DNA microarray; ChIP-chip) showed that during mouse development cyclin D1 occupies promoters of abundantly expressed genes. In particular, we found that in developing mouse retinas-an organ that critically requires cyclin D1 function-cyclin D1 binds the upstream regulatory region of the Notch1 gene, where it serves to recruit CREB binding protein (CBP) histone acetyltransferase. Genetic ablation of cyclin D1 resulted in decreased CBP recruitment, decreased histone acetylation of the Notch1 promoter region, and led to decreased levels of the Notch1 transcript and protein in cyclin D1-null (Ccnd1(-/-)) retinas. Transduction of an activated allele of Notch1 into Ccnd1(-/-) retinas increased proliferation of retinal progenitor cells, indicating that upregulation of Notch1 signalling alleviates the phenotype of cyclin D1-deficiency. These studies show that in addition to its well-established cell cycle roles, cyclin D1 has an in vivo transcriptional function in mouse development. Our approach, which we term 'genetic-proteomic', can be used to study the in vivo function of essentially any protein.

Journal ArticleDOI
TL;DR: Four independent mechanisms for uptake of activated EGFR are identified by a combination of receptor mutagenesis and RNA interference approaches.
Abstract: Endocytosis of the epidermal growth factor receptor (EGFR) is important for the regulation of EGFR signaling. However, EGFR endocytosis mechanisms are poorly understood, which precludes development of approaches to specifically inhibit EGFR endocytosis and analyze its impact on signaling. Using a combination of receptor mutagenesis and RNA interference, we demonstrate that clathrin-dependent internalization of activated EGFR is regulated by four mechanisms, which function in a redundant and cooperative fashion. These mechanisms involve ubiquitination of the receptor kinase domain, the clathrin adaptor complex AP-2, the Grb2 adaptor protein, and three C-terminal lysine residues (K1155, K1158, and K1164), which are acetylated, a novel posttranslational modification for the EGFR. Based on these findings, the first internalization-defective EGFR mutant with functional kinase and normal tyrosine phosphorylation was generated. Analysis of the signaling kinetics of this mutant revealed that EGFR internalization is required for the sustained activation of protein kinase B/AKT but not for the activation of mitogen-activated protein kinase.

Journal ArticleDOI
TL;DR: This analysis identifies an AT1aR-mediated cytoskeletal reorganization network whereby β-arrestin regulates phosphorylation of several key proteins, including cofilin and slingshot in a rapidly evolving area of 7TMR signaling.
Abstract: β-Arrestin–mediated signaling downstream of seven transmembrane receptors (7TMRs) is a relatively new paradigm for signaling by these receptors. We examined changes in protein phosphorylation occurring when HEK293 cells expressing the angiotensin II type 1A receptor (AT1aR) were stimulated with the β-arrestin–biased ligand Sar1, Ile4, Ile8-angiotensin (SII), a ligand previously found to signal through β-arrestin–dependent, G protein-independent mechanisms. Using a phospho-antibody array containing 46 antibodies against signaling molecules, we found that phosphorylation of 35 proteins increased upon SII stimulation. These SII-mediated phosphorylation events were abrogated after depletion of β-arrestin 2 through siRNA-mediated knockdown. We also performed an MS-based quantitative phosphoproteome analysis after SII stimulation using a strategy of stable isotope labeling of amino acids in cell culture (SILAC). We identified 1,555 phosphoproteins (4,552 unique phosphopeptides), of which 171 proteins (222 phosphopeptides) showed increased phosphorylation, and 53 (66 phosphopeptides) showed decreased phosphorylation upon SII stimulation of the AT1aR. This study identified 38 protein kinases and three phosphatases whose phosphorylation status changed upon SII treatment. Using computational approaches, we performed system-based analyses examining the β-arrestin–mediated phosphoproteome including construction of a kinase-substrate network for β-arrestin–mediated AT1aR signaling. Our analysis demonstrates that β-arrestin–dependent signaling processes are more diverse than previously appreciated. Notably, our analysis identifies an AT1aR-mediated cytoskeletal reorganization network whereby β-arrestin regulates phosphorylation of several key proteins, including cofilin and slingshot. This study provides a system-based view of β-arrestin–mediated phosphorylation events downstream of a 7TMR and opens avenues for research in a rapidly evolving area of 7TMR signaling.

Journal ArticleDOI
TL;DR: It is reported that Mdm2 is rapidly degraded after DNA damage and that phosphorylation of MDM2 by casein kinase I (CKI) at multiple sites triggers its interaction with, and subsequent ubiquitination and destruction, by SCF(beta-TRCP).

Journal ArticleDOI
TL;DR: Proteomic analysis of immunopurified human TREX complex identified the protein CIP29 as the only new component with a clear yeast relative (known as Tho1) and concluded that the interaction of two conserved export proteins, CIP 29 and Aly, with UAP56 is strictly regulated by ATP during assembly of the TREXcomplex.
Abstract: The conserved TREX mRNA export complex is known to contain UAP56, Aly, Tex1, and the THO complex. Here, we carried out proteomic analysis of immunopurified human TREX complex and identified the protein CIP29 as the only new component with a clear yeast relative (known as Tho1). Tho1 is known to function in mRNA export, and we provide evidence that CIP29 likewise functions in this process. Like the known TREX components, a portion of CIP29 localizes in nuclear speckle domains, and its efficient recruitment to mRNA is both splicing- and cap-dependent. We show that UAP56 mediates an ATP-dependent interaction between the THO complex and both CIP29 and Aly, indicating that TREX assembly is ATP-dependent. Using recombinant proteins expressed in Escherichia coli, we show that UAP56, Aly, and CIP29 form an ATP-dependent trimeric complex, and UAP56 bridges the interaction between CIP29 and Aly. We conclude that the interaction of two conserved export proteins, CIP29 and Aly, with UAP56 is strictly regulated by ATP during assembly of the TREX complex.

Journal ArticleDOI
TL;DR: The results indicate that Cdc15 phosphoregulation impels both assembly and disassembly of the contractile apparatus and suggest a regulatory strategy that PCH family and BAR superfamily members might broadly employ to achieve temporal specificity in their roles as linkers between membrane and cytoskeleton.

Journal ArticleDOI
TL;DR: It is reported that Rpn10 is monoubiquitinated in vivo and that this modification has profound effects on proteasome function, and a mechanism of control of receptor availability mediated by the Rsp5-Ubp2 system is shown.

Journal ArticleDOI
06 Jan 2010-PLOS ONE
TL;DR: Data demonstrate that pupylation regulates numerous proteins in Mtb and may not always lead to degradation, as well as identifying its "pupylome" using tandem affinity purification.
Abstract: Prokaryotic ubiquitin-like protein (Pup) in Mycobacterium tuberculosis (Mtb) is the first known post-translational small protein modifier in prokaryotes, and targets several proteins for degradation by a bacterial proteasome in a manner akin to ubiquitin (Ub) mediated proteolysis in eukaryotes. To determine the extent of pupylation in Mtb, we used tandem affinity purification to identify its “pupylome”. Mass spectrometry identified 55 out of 604 purified proteins with confirmed pupylation sites. Forty-four proteins, including those with and without identified pupylation sites, were tested as substrates of proteolysis in Mtb. Under steady state conditions, the majority of the test proteins did not accumulate in degradation mutants, suggesting not all targets of pupylation are necessarily substrates of the proteasome under steady state conditions. Four proteins implicated in Mtb pathogenesis, Icl (isocitrate lyase), Ino1 (inositol-1-phosphate synthase), MtrA (Mtb response regulator A) and PhoP (phosphate response regulator P), showed altered levels in degradation defective Mtb. Icl, Ino1 and MtrA accumulated in Mtb degradation mutants, suggesting these proteins are targeted to the proteasome. Unexpectedly, PhoP was present in wild type Mtb but undetectable in the degradation mutants. Taken together, these data demonstrate that pupylation regulates numerous proteins in Mtb and may not always lead to degradation.

Journal ArticleDOI
TL;DR: LRP1 (low density lipoprotein receptor-related protein 1) was identified as a major constituent of GSVs, and it is shown it interacts with the lumenal domains of GLUT4 and other GSV constituents.

Journal ArticleDOI
TL;DR: It is shown that Cdc2-like kinase 2 (Clk2) is an insulin-regulated suppressor of hepatic gluconeogenesis and glucose output and downregulated in db/db mice, and reintroduction of Clk2 largely corrects glycemia.


Journal ArticleDOI
TL;DR: GCP8 is the first subunit with an interphase-specific role in centrosomal γ-tubulin recruitment and microtubule nucleation and identified various interactors including the novel core subunit GCP8.
Abstract: The γ-tubulin complex is a multi-subunit protein complex that nucleates microtubule polymerization. γ-Tubulin complexes are present in all eukaryotes, but size and subunit composition vary. In Drosophila, Xenopus, and humans large γ-tubulin ring complexes (γTuRCs) have been described, which have a characteristic open ring-shaped structure and are composed of a similar set of subunits, named γ-tubulin, GCPs 2-6, and GCP-WD in humans. Despite the identification of these proteins, γTuRC function and regulation remain poorly understood. Here we establish a new method for the purification of native human γTuRC. Using mass spectrometry of whole protein mixtures we compared the composition of γTuRCs from nonsynchronized and mitotic human cells. Based on our analysis we can define core subunits as well as more transient interactors such as the augmin complex, which associates specifically with mitotic γTuRCs. We also identified GCP8/MOZART2 as a novel core subunit that is present in both interphase and mitotic γTuRCs. GCP8 depletion does not affect γTuRC assembly but interferes with γTuRC recruitment and microtubule nucleation at interphase centrosomes without disrupting general centrosome structure. GCP8-depleted cells do not display any obvious mitotic defects, suggesting that GCP8 specifically affects the organization of the interphase microtubule network.

Journal ArticleDOI
TL;DR: Findings indicate that the Rictor/Cullin-1 E3 ligase activity is regulated by a specific signal relay cascade and that misregulation of this mechanism may contribute to the frequent overexpression of SGK1 in various human cancers.

Journal ArticleDOI
TL;DR: In this paper, the authors show that supplementation of mammalian cells with thiophosphate led to targeted insertion of Cys at the UGA codon of thioredoxin reductase 1 (TR1).
Abstract: Cysteine (Cys) is inserted into proteins in response to UGC and UGU codons. Herein, we show that supplementation of mammalian cells with thiophosphate led to targeted insertion of Cys at the UGA codon of thioredoxin reductase 1 (TR1). This Cys was synthesized by selenocysteine (Sec) synthase on tRNA[Ser]Sec and its insertion was dependent on the Sec insertion sequence element in the 3′UTR of TR1 mRNA. The substrate for this reaction, thiophosphate, was synthesized by selenophosphate synthetase 2 from ATP and sulfide and reacted with phosphoseryl-tRNA[Ser]Sec to generate Cys-tRNA[Ser]Sec. Cys was inserted in vivo at UGA codons in natural mammalian TRs, and this process was regulated by dietary selenium and availability of thiophosphate. Cys occurred at 10% of the Sec levels in liver TR1 of mice maintained on a diet with normal amounts of selenium and at 50% in liver TR1 of mice maintained on a selenium deficient diet. These data reveal a novel Sec machinery-based mechanism for biosynthesis and insertion of Cys into protein at UGA codons and suggest new biological functions for thiophosphate and sulfide in mammals.

Journal ArticleDOI
TL;DR: A model is provided in which WDR20 serves as a stimulatory subunit for preserving and regulating the activity of the subset of the UAF1·USP complexes, which contradicts the previous report that USP12 and USP46 do not regulate the FA pathway.

Journal ArticleDOI
TL;DR: SUMOylation of TopoIIα inhibits its decatenation activity, preventing resolution of tangled DNA at centromeres before anaphase onset.
Abstract: DNA topoisomerase IIα (TopoIIα) is an essential chromosome-associated enzyme with activity implicated in the resolution of tangled DNA at centromeres before anaphase onset. However, the regulatory mechanism of TopoIIα activity is not understood. Here, we show that PIASy-mediated small ubiquitin-like modifier 2/3 (SUMO2/3) modification of TopoIIα strongly inhibits TopoIIα decatenation activity. Using mass spectrometry and biochemical analysis, we demonstrate that TopoIIα is SUMOylated at lysine 660 (Lys660), a residue located in the DNA gate domain, where both DNA cleavage and religation take place. Remarkably, loss of SUMOylation on Lys660 eliminates SUMOylation-dependent inhibition of TopoIIα, which indicates that Lys660 SUMOylation is critical for PIASy-mediated inhibition of TopoIIα activity. Together, our findings provide evidence for the regulation of TopoIIα activity on mitotic chromosomes by SUMOylation. Therefore, we propose a novel mechanism for regulation of centromeric DNA catenation during mitosis by PIASy-mediated SUMOylation of TopoIIα.

Journal ArticleDOI
TL;DR: A novel SUMO-2/3-modified mitotic chromosomal protein is isolated and identified as poly(ADP-ribose) polymerase 1 (PARP1), and a residue within the BRCA1 C-terminal domain of PARP1 (lysine 482) is identified as its primary SUMOylation site.

Journal ArticleDOI
TL;DR: It is concluded that intramolecular phosphate transfer does not affect the reliability of current or past phosphorylation data sets, specifically for doubly charged species.
Abstract: Intramolecular transfer of phosphate during collision-induced dissociation (CID) in ion trap mass spectrometers has recently been described. Because phosphorylation events are assigned to discrete serine, threonine, and tyrosine residues based on the presence of site-determining ions in MS/MS spectra, phosphate transfer may invalidate or confound site localization in published large-scale phosphorylation data sets. Here, we present evidence for the occurrence of this phenomenon using synthetic phosphopeptide libraries, specifically for doubly-charged species. We found, however, that the extent of the transfer reaction was insufficient to cause localization of phosphorylation sites to incorrect residues. We further compared CID to electron-transfer dissociation (ETD) for site localization using synthetic libraries and a large-scale yeast phosphoproteome experiment. The agreement in site localization was >99.5 and 93%, respectively, suggesting that ETD-based site localization is no more reliable than CID. We conclude that intramolecular phosphate transfer does not affect the reliability of current or past phosphorylation data sets.

Journal ArticleDOI
TL;DR: Photoreactive stapled BH3 peptide helices are engineered that covalently trap both static and dynamic protein interactors, and enable rapid identification of interaction sites, providing a critical link between interactome discovery and targeted drug design.