scispace - formally typeset
Search or ask a question

Showing papers by "Steven P. Gygi published in 2014"


Journal ArticleDOI
TL;DR: It is found that TGF-β was required for the in vitro development of microglia that express the microglial molecular signature characteristic of adultmicroglia and that microglian were absent in the CNS of TGF -β1–deficient mice.
Abstract: Microglia are myeloid cells of the CNS that participate both in normal CNS function and in disease. We investigated the molecular signature of microglia and identified 239 genes and 8 microRNAs that were uniquely or highly expressed in microglia versus myeloid and other immune cells. Of the 239 genes, 106 were enriched in microglia as compared with astrocytes, oligodendrocytes and neurons. This microglia signature was not observed in microglial lines or in monocytes recruited to the CNS, and was also observed in human microglia. We found that TGF-β was required for the in vitro development of microglia that express the microglial molecular signature characteristic of adult microglia and that microglia were absent in the CNS of TGF-β1-deficient mice. Our results identify a unique microglial signature that is dependent on TGF-β signaling and provide insights into microglial biology and the possibility of targeting microglia for the treatment of CNS disease.

1,902 citations


Journal ArticleDOI
01 May 2014-Nature
TL;DR: In this article, the authors identify a cohort of novel and known autophagosome-enriched proteins in human cells, including cargo receptors, and identify NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy), which is critical for iron homeostasis.
Abstract: Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration. Much of our understanding of this process has emerged from analysis of bulk cytoplasmic autophagy, but our understanding of how specific cargo, including organelles, proteins or intracellular pathogens, are targeted for selective autophagy is limited. Here we use quantitative proteomics to identify a cohort of novel and known autophagosome-enriched proteins in human cells, including cargo receptors. Like known cargo receptors, nuclear receptor coactivator 4 (NCOA4) was highly enriched in autophagosomes, and associated with ATG8 proteins that recruit cargo-receptor complexes into autophagosomes. Unbiased identification of NCOA4-associated proteins revealed ferritin heavy and light chains, components of an iron-filled cage structure that protects cells from reactive iron species but is degraded via autophagy to release iron through an unknown mechanism. We found that delivery of ferritin to lysosomes required NCOA4, and an inability of NCOA4-deficient cells to degrade ferritin led to decreased bioavailable intracellular iron. This work identifies NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy), which is critical for iron homeostasis, and provides a resource for further dissection of autophagosomal cargo-receptor connectivity.

1,015 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the MultiNotch MS3 method uniquely combines multiplexing capacity with quantitative sensitivity and accuracy, drastically increasing the informational value obtainable from proteomic experiments.
Abstract: Multiplexed quantitation via isobaric chemical tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ)) has the potential to revolutionize quantitative proteomics. However, until recently the utility of these tags was questionable due to reporter ion ratio distortion resulting from fragmentation of coisolated interfering species. These interfering signals can be negated through additional gas-phase manipulations (e.g., MS/MS/MS (MS3) and proton-transfer reactions (PTR)). These methods, however, have a significant sensitivity penalty. Using isolation waveforms with multiple frequency notches (i.e., synchronous precursor selection, SPS), we coisolated and cofragmented multiple MS2 fragment ions, thereby increasing the number of reporter ions in the MS3 spectrum 10-fold over the standard MS3 method (i.e., MultiNotch MS3). By increasing the reporter ion signals, this method improves the dynamic range of reporter ion quantitation, reduces reporter ion signal variance...

999 citations


Journal ArticleDOI
05 Jun 2014-Cell
TL;DR: The identification of meteorin-like (Metrnl), a circulating factor that is induced in muscle after exercise and in adipose tissue upon cold exposure, which links host-adaptive responses to the regulation of energy homeostasis and tissue inflammation and has therapeutic potential for metabolic and inflammatory diseases.

680 citations


Journal ArticleDOI
TL;DR: In this paper, the PINK1 kinase-PARKIN UB ligase mitochondrial control pathway disrupted in Parkinson's disease was dissected using quantitative proteomics and live-cell imaging, revealing a feed forward mechanism that explains how PARKIN phosphorylation of both PARKIN and poly-UB chains synthesized by PARKIN drives a program of PARKIN recruitment and mitochondrial ubiquitylation.

544 citations


Journal ArticleDOI
TL;DR: Induced pluripotent stem cells are generated from subjects with GD and PD harbouring GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration are provided.
Abstract: Mutations in the acid β-glucocerebrosidase (GBA1) gene, responsible for the lysosomal storage disorder Gaucher's disease (GD), are the strongest genetic risk factor for Parkinson's disease (PD) known to date. Here we generate induced pluripotent stem cells from subjects with GD and PD harbouring GBA1 mutations, and differentiate them into midbrain dopaminergic neurons followed by enrichment using fluorescence-activated cell sorting. Neurons show a reduction in glucocerebrosidase activity and protein levels, increase in glucosylceramide and α-synuclein levels as well as autophagic and lysosomal defects. Quantitative proteomic profiling reveals an increase of the neuronal calcium-binding protein 2 (NECAB2) in diseased neurons. Mutant neurons show a dysregulation of calcium homeostasis and increased vulnerability to stress responses involving elevation of cytosolic calcium. Importantly, correction of the mutations rescues such pathological phenotypes. These findings provide evidence for a link between GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration.

420 citations


Journal ArticleDOI
TL;DR: The Sestrins are identified as GATOR2-interacting proteins that regulate the amino-acid-sensing branch of the mTORC1 pathway, which requires GATOR1 and the Rag GTPases, and the SestRins regulate the localization of m TORC1 in response to amino acids.

395 citations


Journal ArticleDOI
05 Jun 2014-Cell
TL;DR: A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction, applicable to any virus with a robust in vitro model.

378 citations


Journal ArticleDOI
24 Apr 2014-Nature
TL;DR: The results of this study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.
Abstract: Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers, and is closely associated with poor prognosis and chemo- or radiotherapeutic resistance. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.

302 citations


Journal ArticleDOI
TL;DR: Corrigendum: Identification of a unique TGF-β–dependent molecular and functional signature in microglia and its role in cell reprograming is identified.
Abstract: Nat. Neurosci. 17, 131–143 (2014); published online 8 December 2013; corrected after print 19 December 2013 In the version of this article initially published, the x-axis labels for the sets of graphs in Figure 2f corresponding to astrocyte, oligodendrocyte and neuron molecules consisted of six items, even though there were only five bars.

293 citations


Journal ArticleDOI
TL;DR: It is found that many proteins in the egg lack mRNA support and that many of these proteins are found in blood or liver, suggesting that they are taken up from the blood plasma, together with yolk, during oocyte growth and maturation, potentially contributing to early embryogenesis.

Journal ArticleDOI
TL;DR: It is found that LARP1 associates with the mTOR complex 1 (mTORC1) and is required for global protein synthesis as well as cell growth and proliferation, and implicate Larp1 as an important regulator of cell Growth and proliferation.
Abstract: The mammalian target of rapamycin (mTOR) promotes cell growth and proliferation by promoting mRNA translation and increasing the protein synthetic capacity of the cell. Although mTOR globally promotes translation by regulating the mRNA 5′ cap-binding protein eIF4E (eukaryotic initiation factor 4E), it also preferentially regulates the translation of certain classes of mRNA via unclear mechanisms. To help fill this gap in knowledge, we performed a quantitative proteomic screen to identify proteins that associate with the mRNA 5′ cap in an mTOR-dependent manner. Using this approach, we identified many potential regulatory factors, including the putative RNA-binding protein LARP1 (La-related protein 1). Our results indicate that LARP1 associates with actively translating ribosomes via PABP and that LARP1 stimulates the translation of mRNAs containing a 5′ terminal oligopyrimidine (TOP) motif, encoding for components of the translational machinery. We found that LARP1 associates with the mTOR complex 1 (mTORC1) and is required for global protein synthesis as well as cell growth and proliferation. Together, these data reveal important molecular mechanisms involved in TOP mRNA translation and implicate LARP1 as an important regulator of cell growth and proliferation.

Journal ArticleDOI
29 Jul 2014-eLife
TL;DR: It is shown that although protein levels largely scale with gene copy number, subunits of multi-protein complexes are notable exceptions and posttranslational mechanisms attenuate their expression when their encoding genes are in excess.
Abstract: Aneuploidy causes severe developmental defects and is a near universal feature of tumor cells. Despite its profound effects, the cellular processes affected by aneuploidy are not well characterized. Here, we examined the consequences of aneuploidy on the proteome of aneuploid budding yeast strains. We show that although protein levels largely scale with gene copy number, subunits of multi-protein complexes are notable exceptions. Posttranslational mechanisms attenuate their expression when their encoding genes are in excess. Our proteomic analyses further revealed a novel aneuploidy-associated protein expression signature characteristic of altered metabolism and redox homeostasis. Indeed aneuploid cells harbor increased levels of reactive oxygen species (ROS). Interestingly, increased protein turnover attenuates ROS levels and this novel aneuploidy-associated signature and improves the fitness of most aneuploid strains. Our results show that aneuploidy causes alterations in metabolism and redox homeostasis. Cells respond to these alterations through both transcriptional and posttranscriptional mechanisms.

Journal ArticleDOI
08 May 2014-Cell
TL;DR: It is found that the CatSper channel is required for four linear calcium domains that organize signaling proteins along the flagella that focuses tyrosine phosphorylation in time and space as sperm acquire the capacity to fertilize.

Journal ArticleDOI
TL;DR: It is proposed that yeast Msp1 and mammalian ATAD1 are conserved members of the mitochondrial protein quality control system that might promote the extraction and degradation of mislocalized TA proteins to maintain mitochondrial integrity.
Abstract: The majority of ER-targeted tail-anchored (TA) proteins are inserted into membranes by the Guided Entry of Tail-anchored protein (GET) system. Disruption of this system causes a subset of TA proteins to mislocalize to mitochondria. We show that the AAA+ ATPase Msp1 limits the accumulation of mislocalized TA proteins on mitochondria. Deletion of MSP1 causes the Pex15 and Gos1 TA proteins to accumulate on mitochondria when the GET system is impaired. Likely as a result of failing to extract mislocalized TA proteins, yeast with combined mutation of the MSP1 gene and the GET system exhibit strong synergistic growth defects and severe mitochondrial damage, including loss of mitochondrial DNA and protein and aberrant mitochondrial morphology. Like yeast Msp1, human ATAD1 limits the mitochondrial mislocalization of PEX26 and GOS28, orthologs of Pex15 and Gos1, respectively. GOS28 protein level is also increased in ATAD1−/− mouse tissues. Therefore, we propose that yeast Msp1 and mammalian ATAD1 are conserved members of the mitochondrial protein quality control system that might promote the extraction and degradation of mislocalized TA proteins to maintain mitochondrial integrity.

Journal ArticleDOI
TL;DR: It is shown that mammalian 26S proteasomes have five associated ubiquitin ligases and that multiple proteasome subunits are ubiquitinated in cells, especially the ubiquit in receptor subunit, Rpn13, which strongly decreases the prote asome's ability to bind and degrade ubiqu itin‐conjugated proteins, but not its activity against peptide substrates.
Abstract: Degradation rates of most proteins in eukaryotic cells are determined by their rates of ubiquitination. However, possible regulation of the proteasome's capacity to degrade ubiquitinated proteins has received little attention, although proteasome inhibitors are widely used in research and cancer treatment. We show here that mammalian 26S proteasomes have five associated ubiquitin ligases and that multiple proteasome subunits are ubiquitinated in cells, especially the ubiquitin receptor subunit, Rpn13. When proteolysis is even partially inhibited in cells or purified 26S proteasomes with various inhibitors, Rpn13 becomes extensively and selectively poly-ubiquitinated by the proteasome-associated ubiquitin ligase, Ube3c/Hul5. This modification also occurs in cells during heat-shock or arsenite treatment, when poly-ubiquitinated proteins accumulate. Rpn13 ubiquitination strongly decreases the proteasome's ability to bind and degrade ubiquitin-conjugated proteins, but not its activity against peptide substrates. This autoinhibitory mechanism presumably evolved to prevent binding of ubiquitin conjugates to defective or stalled proteasomes, but this modification may also be useful as a biomarker indicating the presence of proteotoxic stress and reduced proteasomal capacity in cells or patients.

Journal ArticleDOI
TL;DR: It is reported that in vivo cyclin C acts as a haploinsufficient tumour suppressor, by controlling Notch1 oncogene levels, and point mutations in human T-ALL that render cyclin-C–CDK unable to phosphorylate ICN1 are described.
Abstract: Cyclin C was cloned as a growth-promoting G1 cyclin, and was also shown to regulate gene transcription Here we report that in vivo cyclin C acts as a haploinsufficient tumour suppressor, by controlling Notch1 oncogene levels Cyclin C activates an 'orphan' CDK19 kinase, as well as CDK8 and CDK3 These cyclin-C-CDK complexes phosphorylate the Notch1 intracellular domain (ICN1) and promote ICN1 degradation Genetic ablation of cyclin C blocks ICN1 phosphorylation in vivo, thereby elevating ICN1 levels in cyclin-C-knockout mice Cyclin C ablation or heterozygosity collaborates with other oncogenic lesions and accelerates development of T-cell acute lymphoblastic leukaemia (T-ALL) Furthermore, the cyclin C encoding gene CCNC is heterozygously deleted in a significant fraction of human T-ALLs, and these tumours express reduced cyclin C levels We also describe point mutations in human T-ALL that render cyclin-C-CDK unable to phosphorylate ICN1 Hence, tumour cells may develop different strategies to evade inhibition by cyclin C

Journal ArticleDOI
TL;DR: It is reported that EglN2 can hydroxylate FOXO3a on two specific prolyl residues in vitro and in vivo, which provides new insights into post-transcriptional control of FOXO 3a and provides a new avenue for pharmacologically altering Cyclin D1 activity.
Abstract: The three EglN prolyl hydroxylases (EglN1, EglN2, and EglN3) regulate the stability of the HIF transcription factor. We recently showed that loss of EglN2, however, also leads to down-regulation of Cyclin D1 and decreased cell proliferation in a HIF-independent manner. Here we report that EglN2 can hydroxylate FOXO3a on two specific prolyl residues in vitro and in vivo. Hydroxylation of these sites prevents the binding of USP9x deubiquitinase, thereby promoting the proteasomal degradation of FOXO3a. FOXO transcription factors can repress Cyclin D1 transcription. Failure to hydroxylate FOXO3a promotes its accumulation in cells, which in turn suppresses Cyclin D1 expression. These findings provide new insights into post-transcriptional control of FOXO3a and provide a new avenue for pharmacologically altering Cyclin D1 activity.

Journal ArticleDOI
TL;DR: A system-wide view of phosphorylation events downstream of SDF-1/CXCR4 signaling in breast CSCs is given, providing a resource for the study of CSC-targeted cancer therapy and identifying several previously unidentified phosphoproteins and signaling pathways in Breast cancer stem cells.
Abstract: Breast cancer is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.7 million new cases and 522,000 deaths around the world in 2012 alone. Cancer stem cells (CSCs) are essential for tumor reoccurrence and metastasis which is the major source of cancer lethality. G protein-coupled receptor chemokine (C-X-C motif) receptor 4 (CXCR4) is critical for tumor metastasis. However, stromal cell-derived factor 1 (SDF-1)/CXCR4–mediated signaling pathways in breast CSCs are largely unknown. Using isotope reductive dimethylation and large-scale MS-based quantitative phosphoproteome analysis, we examined protein phosphorylation induced by SDF-1/CXCR4 signaling in breast CSCs. We quantified more than 11,000 phosphorylation sites in 2,500 phosphoproteins. Of these phosphosites, 87% were statistically unchanged in abundance in response to SDF-1/CXCR4 stimulation. In contrast, 545 phosphosites in 266 phosphoproteins were significantly increased, whereas 113 phosphosites in 74 phosphoproteins were significantly decreased. SDF-1/CXCR4 increases phosphorylation in 60 cell migration- and invasion-related proteins, of them 43 (>70%) phosphoproteins are unrecognized. In addition, SDF-1/CXCR4 upregulates the phosphorylation of 44 previously uncharacterized kinases, 8 phosphatases, and 1 endogenous phosphatase inhibitor. Using computational approaches, we performed system-based analyses examining SDF-1/CXCR4–mediated phosphoproteome, including construction of kinase–substrate network and feedback regulation loops downstream of SDF-1/CXCR4 signaling in breast CSCs. We identified a previously unidentified SDF-1/CXCR4-PKA-MAP2K2-ERK signaling pathway and demonstrated the feedback regulation on MEK, ERK1/2, δ-catenin, and PPP1Cα in SDF-1/CXCR4 signaling in breast CSCs. This study gives a system-wide view of phosphorylation events downstream of SDF-1/CXCR4 signaling in breast CSCs, providing a resource for the study of CSC-targeted cancer therapy.

Journal ArticleDOI
02 Jul 2014-Neuron
TL;DR: This work reports that depletion of the NuRD complex by in vivo RNAi and conditional knockout of the core NuRD subunit Chd4 profoundly impairs the establishment of granule neuron parallel fiber/Purkinje cell synapses in the rodent cerebellar cortex in vo.

Journal ArticleDOI
01 Jun 2014-RNA
TL;DR: It is demonstrated that Red1 partners with other proteins to silence meiotic gene expression at the post-transcriptional level and Conservation of a NURS-like complex in human cells suggests that this pathway plays an ancient and fundamental role in RNA silencing.
Abstract: RNA is a central component of gene-silencing pathways that regulate diverse cellular processes. In the fission yeast Schizosaccharomyces pombe, an RNA-based mechanism represses meiotic gene expression during vegetative growth. This pathway depends on the zinc finger protein Red1, which is required to degrade meiotic mRNAs as well as to target histone H3 lysine 9 (H3K9) methylation, a repressive chromatin mark, to a subset of meiotic genes. However, the mechanism of Red1 function is unknown. Here we use affinity purification and mass spectrometry to identify a Red1-containing nuclear RNA silencing (NURS) complex. In addition to Red1, this complex includes the Mtl1, Red5, Ars2, Rmn1, and Iss10 proteins and associates with several other complexes that are involved in either signaling or mediating RNA silencing. By analyzing the effects of gene knockouts and inducible knockdown alleles, we show that NURS subunits regulate RNA degradation and H3K9 methylation at meiotic genes. We also identify roles for individual NURS subunits in interactions with Mmi1, an RNA-binding protein that marks meiotic RNAs for destruction, and the nuclear exosome RNA degradation complex. Finally, we show that the levels of H3K9 methylation at meiotic genes are not sufficient to restrict RNA polymerase II access or repress gene expression during vegetative growth. Our results demonstrate that Red1 partners with other proteins to silence meiotic gene expression at the post-transcriptional level. Conservation of a NURS-like complex in human cells suggests that this pathway plays an ancient and fundamental role in RNA silencing.

Journal ArticleDOI
TL;DR: This work defines protein-protein interactions using a coaffinity purification/mass spectrometry method and studies 459 Drosophila melanogaster transcription-related factors to define an integrated network that connects combinatorial TF protein interactions to the transcriptional regulatory network of the cell.

Journal ArticleDOI
TL;DR: An evolutionarily conserved SDH assembly factor designated Sdh8/SDHAF4 is characterized, providing insights into the mechanisms by which SDH is assembled and raising the possibility that some forms of neuromuscular disease may be associated with mutations that affect this SDHAssembly factor.

Journal ArticleDOI
TL;DR: It is shown that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise, which elucidates a previously unknown mechanism of muscle anabolism and gives another target of investigation for therapies against the loss of muscle mass seen with aging and various wasting diseases.
Abstract: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4–induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

Journal ArticleDOI
TL;DR: A new membrane-embedded CI assembly factor is defined and provided a resource for further analysis of CI biology and Quantitative proteomics demonstrated a role for TIMMDC1 in assembly of membrane- embedded and soluble arms of the complex.
Abstract: Complex I (CI) of the electron transport chain, a large membrane-embedded NADH dehydrogenase, couples electron transfer to the release of protons into the mitochondrial inner membrane space to promote ATP production through ATP synthase. In addition to being a central conduit for ATP production, CI activity has been linked to neurodegenerative disorders, including Parkinson's disease. CI is built in a stepwise fashion through the actions of several assembly factors. We employed interaction proteomics to interrogate the molecular associations of 15 core subunits and assembly factors previously linked to human CI deficiency, resulting in a network of 101 proteins and 335 interactions (edges). TIMMDC1, a predicted 4-pass membrane protein, reciprocally associated with multiple members of the MCIA CI assembly factor complex and core CI subunits and was localized in the mitochondrial inner membrane, and its depletion resulted in reduced CI activity and cellular respiration. Quantitative proteomics demonstrated a role for TIMMDC1 in assembly of membrane-embedded and soluble arms of the complex. This study defines a new membrane-embedded CI assembly factor and provides a resource for further analysis of CI biology.

Journal ArticleDOI
TL;DR: WhiB1, an essential transcriptional repressor capable of auto-repression, is identified as a substrate of the mycobacterial Clp protease, adding to the growing evidence of how post-translational regulation plays a critical role in the regulation of bacterial physiology.
Abstract: Unlike most bacterial species, Mycobacterium tuberculosis depends on the Clp proteolysis system for survival even in in vitro conditions. We hypothesized that Clp is required for the physiologic turnover of mycobacterial proteins whose accumulation is deleterious to bacterial growth and survival. To identify cellular substrates, we employed quantitative proteomics and transcriptomics to identify the set of proteins that accumulated upon the loss of functional Clp protease. Among the set of potential Clp substrates uncovered, we were able to unambiguously identify WhiB1, an essential transcriptional repressor capable of auto-repression, as a substrate of the mycobacterial Clp protease. Dysregulation of WhiB1 turnover had a toxic effect that was not rescued by repression of whiB1 transcription. Thus, under normal growth conditions, Clp protease is the predominant regulatory check on the levels of potentially toxic cellular proteins. Our findings add to the growing evidence of how post-translational regulation plays a critical role in the regulation of bacterial physiology.

Journal ArticleDOI
TL;DR: By promoting dissociation of the desmosomal component plakoglobin fromPI3K, the ubiquitin ligase Trim32 reduces PI3K–Akt–FoxO signaling in normal and atrophying muscle, potentially contributing to insulin resistance and catabolic disorders.
Abstract: Activation of the PI3K–Akt–FoxO pathway induces cell growth, whereas its inhibition reduces cell survival and, in muscle, causes atrophy. Here, we report a novel mechanism that suppresses PI3K–Akt–FoxO signaling. Although skeletal muscle lacks desmosomes, it contains multiple desmosomal components, including plakoglobin. In normal muscle plakoglobin binds the insulin receptor and PI3K subunit p85 and promotes PI3K–Akt–FoxO signaling. During atrophy, however, its interaction with PI3K–p85 is reduced by the ubiquitin ligase Trim32 (tripartite motif containing protein 32). Inhibition of Trim32 enhanced plakoglobin binding to PI3K–p85 and promoted PI3K–Akt–FoxO signaling. Surprisingly, plakoglobin overexpression alone enhanced PI3K–Akt–FoxO signaling. Furthermore, Trim32 inhibition in normal muscle increased PI3K–Akt–FoxO signaling, enhanced glucose uptake, and induced fiber growth, whereas plakoglobin down-regulation reduced PI3K–Akt–FoxO signaling, decreased glucose uptake, and caused atrophy. Thus, by promoting plakoglobin–PI3K dissociation, Trim32 reduces PI3K–Akt–FoxO signaling in normal and atrophying muscle. This mechanism probably contributes to insulin resistance during fasting and catabolic diseases and perhaps to the myopathies and cardiomyopathies seen with Trim32 and plakoglobin mutations.

Journal ArticleDOI
TL;DR: Findings expand the list of potential COP1 substrates to include proteins whose COP1-binding sites are subject to regulatory phosphorylation and provide insights into transformation by Src family kinases.

Journal ArticleDOI
TL;DR: PP2ARts1 controls diverse pathways that influence cell size and may link cell cycle entry to cell growth via the transcription factor Ace2.
Abstract: Cell size checkpoints ensure that passage through G1 and mitosis occurs only when sufficient growth has occurred. The mechanisms by which these checkpoints work are largely unknown. PP2A associated with the Rts1 regulatory subunit (PP2ARts1) is required for cell size control in budding yeast, but the relevant targets are unknown. In this paper, we used quantitative proteome-wide mass spectrometry to identify proteins controlled by PP2ARts1. This revealed that PP2ARts1 controls the two key checkpoint pathways thought to regulate the cell cycle in response to cell growth. To investigate the role of PP2ARts1 in these pathways, we focused on the Ace2 transcription factor, which is thought to delay cell cycle entry by repressing transcription of the G1 cyclin CLN3. Diverse experiments suggest that PP2ARts1 promotes cell cycle entry by inhibiting the repressor functions of Ace2. We hypothesize that control of Ace2 by PP2ARts1 plays a role in mechanisms that link G1 cyclin accumulation to cell growth.

Journal ArticleDOI
TL;DR: A validated set of transgenic RNA-interference reagents for knockdown and characterization of all protein kinases and phosphatases present during early Drosophila melanogaster development and shows how correlative phosphorylation at the site level can indicate function.