scispace - formally typeset
Search or ask a question
Author

Steven S. Beauchemin

Other affiliations: Mississippi State University
Bio: Steven S. Beauchemin is an academic researcher from University of Western Ontario. The author has contributed to research in topics: Optical flow & Advanced driver assistance systems. The author has an hindex of 12, co-authored 46 publications receiving 6928 citations. Previous affiliations of Steven S. Beauchemin include Mississippi State University.

Papers
More filters
Journal ArticleDOI
TL;DR: These comparisons are primarily empirical, and concentrate on the accuracy, reliability, and density of the velocity measurements; they show that performance can differ significantly among the techniques the authors implemented.
Abstract: While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, matching, energy-based, and phase-based methods. Our comparisons are primarily empirical, and concentrate on the accuracy, reliability, and density of the velocity measurements; they show that performance can differ significantly among the techniques we implemented.

4,771 citations

Journal ArticleDOI
TL;DR: The computation of optical flow is investigated in this survey: widely known methods for estimating optical flow are classified and examined by scrutinizing the hypothesis and assumptions they use.
Abstract: Two-dimensional image motion is the projection of the three-dimensional motion of objects, relative to a visual sensor, onto its image plane. Sequences of time-orderedimages allow the estimation of projected two-dimensional image motion as either instantaneous image velocities or discrete image displacements. These are usually called the optical flow field or the image velocity field. Provided that optical flow is a reliable approximation to two-dimensional image motion, it may then be used to recover the three-dimensional motion of the visual sensor (to within a scale factor) and the three-dimensional surface structure (shape or relative depth) through assumptions concerning the structure of the optical flow field, the three-dimensional environment, and the motion of the sensor. Optical flow may also be used to perform motion detection, object segmentation, time-to-collision and focus of expansion calculations, motion compensated encoding, and stereo disparity measurement. We investigate the computation of optical flow in this survey: widely known methods for estimating optical flow are classified and examined by scrutinizing the hypothesis and assumptions they use. The survey concludes with a discussion of current research issues.

1,317 citations

Proceedings ArticleDOI
15 Jun 1992
TL;DR: The performance of six optical flow techniques is compared, emphasizing measurement accuracy, and it is found that some form of confidence measure/threshold is crucial for all techniques in order to separate the inaccurate from the accurate.
Abstract: The performance of six optical flow techniques is compared, emphasizing measurement accuracy. The most accurate methods are found to be the local differential approaches, where nu is computed explicitly in terms of a locally constant or linear model. Techniques using global smoothness constraints appear to produce visually attractive flow fields, but in general seem to be accurate enough for qualitative use only and insufficient as precursors to the computations of egomotion and 3D structures. It is found that some form of confidence measure/threshold is crucial for all techniques in order to separate the inaccurate from the accurate. Drawbacks of the six techniques are discussed. >

697 citations

Journal ArticleDOI
19 Jun 2020
TL;DR: A model to predict driver maneuvers, including left/right lane changes, left/ right turns and driving straight forward 3.6 seconds on average before they occur in real time is developed which utilizes data on the driver's gaze and head position as well as vehicle dynamics data.
Abstract: Driver maneuver prediction is of great importance in designing a modern Advanced Driver Assistance System (ADAS). Such predictions can improve driving safety by alerting the driver to the danger of unsafe or risky traffic situations. In this research, we developed a model to predict driver maneuvers, including left/right lane changes, left/right turns and driving straight forward 3.6 seconds on average before they occur in real time. For this, we propose a deep learning method based on Long Short-Term Memory (LSTM) which utilizes data on the driver's gaze and head position as well as vehicle dynamics data. We applied our approach on real data collected during drives in an urban environment in an instrumented vehicle. In comparison with previous IOHMM techniques that predicted three maneuvers including left/right turns and driving straight, our prediction model is able to anticipate two more maneuvers. In addition to this, our experimental results show that our model using identical dataset improved F1 score by 4% and increased to 84%.

49 citations

Journal ArticleDOI
TL;DR: A portable and scalable vehicular instrumentation designed for on-road experimentation and hypothesis verification in the context of designing i-ADAS prototypes is described.
Abstract: Probably the most promising breakthroughs in vehicular safety will emerge from intelligent, Advanced Driving Assistance Systems (i-ADAS). Influential research institutions and large vehicle manufacturers work in lockstep to create advanced, on-board safety systems by means of integrating the functionality of existing systems and developing innovative sensing technologies. In this contribution, we describe a portable and scalable vehicular instrumentation designed for on-road experimentation and hypothesis verification in the context of designing i-ADAS prototypes.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Abstract: Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can be easily extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth, and are making both the code and data sets available on the Web.

7,458 citations

Journal ArticleDOI
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.

6,842 citations

Journal ArticleDOI
TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Abstract: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

5,318 citations

Journal ArticleDOI
TL;DR: These comparisons are primarily empirical, and concentrate on the accuracy, reliability, and density of the velocity measurements; they show that performance can differ significantly among the techniques the authors implemented.
Abstract: While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, matching, energy-based, and phase-based methods. Our comparisons are primarily empirical, and concentrate on the accuracy, reliability, and density of the velocity measurements; they show that performance can differ significantly among the techniques we implemented.

4,771 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations