scispace - formally typeset
Search or ask a question
Author

Steven Schmidt

Bio: Steven Schmidt is an academic researcher from Cold Spring Harbor Laboratory. The author has contributed to research in topics: SNP array & SNP genotyping. The author has an hindex of 5, co-authored 5 publications receiving 3513 citations.

Papers
More filters
Journal ArticleDOI
15 Feb 2001-Nature
TL;DR: This high-density SNP map provides a public resource for defining haplotype variation across the genome, and should help to identify biomedically important genes for diagnosis and therapy.
Abstract: We describe a map of 1.42 million single nucleotide polymorphisms (SNPs) distributed throughout the human genome, providing an average density on available sequence of one SNP every 1.9 kilobases. These SNPs were primarily discovered by two projects: The SNP Consortium and the analysis of clone overlaps by the International Human Genome Sequencing Consortium. The map integrates all publicly available SNPs with described genes and other genomic features. We estimate that 60,000 SNPs fall within exon (coding and untranslated regions), and 85% of exons are within 5 kb of the nearest SNP. Nucleotide diversity varies greatly across the genome, in a manner broadly consistent with a standard population genetic model of human history. This high-density SNP map provides a public resource for defining haplotype variation across the genome, and should help to identify biomedically important genes for diagnosis and therapy.

2,908 citations

Journal ArticleDOI
TL;DR: Gramene replaces the existing AceDB database 'RiceGenes' with a relational database based on Oracle, which aims to use the rice genetic, physical and sequence maps as fundamental organizing units, to provide a common denominator for moving from one crop grass to another and to serve as a portal for interconnecting with other web-based crop grass resources.
Abstract: Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice. Rice, in addition to being an economically important crop, is also a model monocot for understanding other agronomically important grass genomes. Gramene replaces the existing AceDB database ‘RiceGenes’ with a relational database based on Oracle. Gramene provides curated and integrative information about maps, sequence, genes, genetic markers, mutants, QTLs, controlled vocabularies and publications. Its aims are to use the rice genetic, physical and sequence maps as fundamental organizing units, to provide a common denominator for moving from one crop grass to another and is to serve as a portal for interconnecting with other web-based crop grass resources. This paper describes the initial steps we have taken towards realizing these goals.

234 citations

Journal ArticleDOI
TL;DR: Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci and contributes to the authors' understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops.
Abstract: Rice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind’s most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, http:// www.fao.org; USDA 1997, http://www.usda.gov). Continued improvement of Poaceae crops is necessary in order to continue to feed an ever-growing worldpopulation.However,ofthemajorcropgrasses, only rice (Oryza sativa), with a compact genome of � 400 Mbp, has been sequenced and annotated. The Gramene database (http://www.gramene.org) takes advantage of the known genetic colinearity (synteny) between rice and the major crop plant genomes to provide maize, sorghum, millet, wheat, oat and barley researchers with the benefits of an annotated genome years before their own species are sequenced. Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci. The addition of several new tools to Gramene has greatly facilitated the potential for comparative analysis among the grasses and contributes to our understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops. Since the last publication on Gramene database by D. H. Ware, P. Jaiswal, J. Ni, I. V. Yap, X. Pan, K. Y. Clark, L. Teytelman, S. C. Schmidt, W. Zhao, K.Changetal.[(2002),PlantPhysiol.,130,1606–1613], the database has undergone extensive changes that are described in this publication.

192 citations

Journal ArticleDOI
TL;DR: A brief overview of the search tools available to the plant research community in Gramene is presented, making extensive use of controlled vocabularies to describe specific biological attributes in ways that permit users to query those domains and make comparisons across taxonomic groups.
Abstract: Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice (Oryza sativa). It combines a semi-automatically generated database of cereal genomic and expressed sequence tag sequences, genetic maps, map relations, and publications, with a curated database of rice mutants (genes and alleles), molecular markers, and proteins. Gramene curators read and extract detailed information from published sources, summarize that information in a structured format, and establish links to related objects both inside and outside the database, providing seamless connections between independent sources of information. Genetic, physical, and sequence-based maps of rice serve as the fundamental organizing units and provide a common denominator for moving across species and genera within the grass family. Comparative maps of rice, maize (Zea mays), sorghum (Sorghum bicolor), barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa) are anchored by a set of curated correspondences. In addition to sequence-based mappings found in comparative maps and rice genome displays, Gramene makes extensive use of controlled vocabularies to describe specific biological attributes in ways that permit users to query those domains and make comparisons across taxonomic groups. Proteins are annotated for functional significance using gene ontology terms that have been adopted by numerous model species databases. Genetic variants including phenotypes are annotated using plant ontology terms common to all plants and trait ontology terms that are specific to rice. In this paper, we present a brief overview of the search tools available to the plant research community in Gramene.

181 citations

Journal ArticleDOI
TL;DR: Gramene is populating and curating Gramene with annotated rice genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci in order to support queries across various data sets as well as across external databases.
Abstract: Gramene (http://www.gramene.org/) is a comparative genome database for cereal crops and a community resource for rice. We are populating and curating Gramene with annotated rice (Oryza sativa) genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci (QTL). In order to support queries across various data sets as well as across external databases, Gramene will employ three related controlled vocabularies. The specific goal of Gramene is, first to provide a Trait Ontology (TO) that can be used across the cereal crops to facilitate phenotypic comparisons both within and between the genera. Second, a vocabulary for plant anatomy terms, the Plant Ontology (PO) will facilitate the curation of morphological and anatomical feature information with respect to expression, localization of genes and gene products and the affected plant parts in a phenotype. The TO and PO are both in the early stages of development in collaboration with the International Rice Research Institute, TAIR and MaizeDB as part of the Plant Ontology Consortium. Finally, as part of another consortium comprising macromolecular databases from other model organisms, the Gene Ontology Consortium, we are annotating the confirmed and predicted protein entries from rice using both electronic and manual curation.

99 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu.
Abstract: As vertebrate genome sequences near completion and research refocuses to their analysis, the issue of effective genome annotation display becomes critical. A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu. This browser displays assembly contigs and gaps, mRNA and expressed sequence tag alignments, multiple gene predictions, cross-species homologies, single nucleotide polymorphisms, sequence-tagged sites, radiation hybrid data, transposon repeats, and more as a stack of coregistered tracks. Text and sequence-based searches provide quick and precise access to any region of specific interest. Secondary links from individual features lead to sequence details and supplementary off-site databases. One-half of the annotation tracks are computed at the University of California, Santa Cruz from publicly available sequence data; collaborators worldwide provide the rest. Users can stably add their own custom tracks to the browser for educational or research purposes. The conceptual and technical framework of the browser, its underlying MYSQL database, and overall use are described. The web site currently serves over 50,000 pages per day to over 3000 different users.

9,605 citations

Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype as mentioned in this paper, and the results of the pilot phase of the project, designed to develop and compare different strategies for genomewide sequencing with high-throughput platforms.
Abstract: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

7,538 citations

Journal ArticleDOI
John W. Belmont1, Paul Hardenbol, Thomas D. Willis, Fuli Yu1, Huanming Yang2, Lan Yang Ch'Ang, Wei Huang3, Bin Liu2, Yan Shen3, Paul K.H. Tam4, Lap-Chee Tsui4, Mary M.Y. Waye5, Jeffrey Tze Fei Wong6, Changqing Zeng2, Qingrun Zhang2, Mark S. Chee7, Luana Galver7, Semyon Kruglyak7, Sarah S. Murray7, Arnold Oliphant7, Alexandre Montpetit8, Fanny Chagnon8, Vincent Ferretti8, Martin Leboeuf8, Michael S. Phillips8, Andrei Verner8, Shenghui Duan9, Denise L. Lind10, Raymond D. Miller9, John P. Rice9, Nancy L. Saccone9, Patricia Taillon-Miller9, Ming Xiao10, Akihiro Sekine, Koki Sorimachi, Yoichi Tanaka, Tatsuhiko Tsunoda, Eiji Yoshino, David R. Bentley11, Sarah E. Hunt11, Don Powell11, Houcan Zhang12, Ichiro Matsuda13, Yoshimitsu Fukushima14, Darryl Macer15, Eiko Suda15, Charles N. Rotimi16, Clement Adebamowo17, Toyin Aniagwu17, Patricia A. Marshall18, Olayemi Matthew17, Chibuzor Nkwodimmah17, Charmaine D.M. Royal16, Mark Leppert19, Missy Dixon19, Fiona Cunningham20, Ardavan Kanani20, Gudmundur A. Thorisson20, Peter E. Chen21, David J. Cutler21, Carl S. Kashuk21, Peter Donnelly22, Jonathan Marchini22, Gilean McVean22, Simon Myers22, Lon R. Cardon22, Andrew P. Morris22, Bruce S. Weir23, James C. Mullikin24, Michael Feolo24, Mark J. Daly25, Renzong Qiu26, Alastair Kent, Georgia M. Dunston16, Kazuto Kato27, Norio Niikawa28, Jessica Watkin29, Richard A. Gibbs1, Erica Sodergren1, George M. Weinstock1, Richard K. Wilson9, Lucinda Fulton9, Jane Rogers11, Bruce W. Birren25, Hua Han2, Hongguang Wang, Martin Godbout30, John C. Wallenburg8, Paul L'Archevêque, Guy Bellemare, Kazuo Todani, Takashi Fujita, Satoshi Tanaka, Arthur L. Holden, Francis S. Collins24, Lisa D. Brooks24, Jean E. McEwen24, Mark S. Guyer24, Elke Jordan31, Jane Peterson24, Jack Spiegel24, Lawrence M. Sung32, Lynn F. Zacharia24, Karen Kennedy29, Michael Dunn29, Richard Seabrook29, Mark Shillito, Barbara Skene29, John Stewart29, David Valle21, Ellen Wright Clayton33, Lynn B. Jorde19, Aravinda Chakravarti21, Mildred K. Cho34, Troy Duster35, Troy Duster36, Morris W. Foster37, Maria Jasperse38, Bartha Maria Knoppers39, Pui-Yan Kwok10, Julio Licinio40, Jeffrey C. Long41, Pilar N. Ossorio42, Vivian Ota Wang33, Charles N. Rotimi16, Patricia Spallone29, Patricia Spallone43, Sharon F. Terry44, Eric S. Lander25, Eric H. Lai45, Deborah A. Nickerson46, Gonçalo R. Abecasis41, David Altshuler47, Michael Boehnke41, Panos Deloukas11, Julie A. Douglas41, Stacey Gabriel25, Richard R. Hudson48, Thomas J. Hudson8, Leonid Kruglyak49, Yusuke Nakamura50, Robert L. Nussbaum24, Stephen F. Schaffner25, Stephen T. Sherry24, Lincoln Stein20, Toshihiro Tanaka 
18 Dec 2003-Nature
TL;DR: The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance the ability to choose targets for therapeutic intervention.
Abstract: The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome and to make this information freely available in the public domain. An international consortium is developing a map of these patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance our ability to choose targets for therapeutic intervention.

5,926 citations

Journal ArticleDOI
21 Jun 2002-Science
TL;DR: It is shown that the human genome can be parsed objectively into haplotype blocks: sizable regions over which there is little evidence for historical recombination and within which only a few common haplotypes are observed.
Abstract: Haplotype-based methods offer a powerful approach to disease gene mapping, based on the association between causal mutations and the ancestral haplotypes on which they arose. As part of The SNP Consortium Allele Frequency Projects, we characterized haplotype patterns across 51 autosomal regions (spanning 13 megabases of the human genome) in samples from Africa, Europe, and Asia. We show that the human genome can be parsed objectively into haplotype blocks: sizable regions over which there is little evidence for historical recombination and within which only a few common haplotypes are observed. The boundaries of blocks and specific haplotypes they contain are highly correlated across populations. We demonstrate that such haplotype frameworks provide substantial statistical power in association studies of common genetic variation across each region. Our results provide a foundation for the construction of a haplotype map of the human genome, facilitating comprehensive genetic association studies of human disease.

5,634 citations