scispace - formally typeset
Search or ask a question
Author

Steven Sherwood

Bio: Steven Sherwood is an academic researcher from Genentech. The author has contributed to research in topics: Nucleic acid & Uncoupling protein. The author has an hindex of 6, co-authored 19 publications receiving 2790 citations.

Papers
More filters
Patent
04 Oct 2006
TL;DR: In this paper, the present invention is directed to secreted and transmembrane polypeptides and to nucleic acid molecules encoding those polyptides, and vectors and host cells comprising those nucleic amino acid sequences.
Abstract: The present invention is directed to secreted and transmembrane polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.

1,267 citations

Journal ArticleDOI
17 Dec 1998-Nature
TL;DR: Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing a decoy receptor that blocks FasL, which was amplified in about half of 35 primary lung and colon tumours studied and DcR3 messenger RNA was expressed in malignant tissue.
Abstract: Fas ligand (FasL) is produced by activated T cells and natural killer cells and it induces apoptosis (programmed cell death) in target cells through the death receptor Fas/Apol/CD95. One important role of FasL and Fas is to mediate immune-cytotoxic killing of cells that are potentially harmful to the organism, such as virus-infected or tumour cells. Here we report the discovery of a soluble decoy receptor, termed decoy receptor 3 (DcR3), that binds to FasL and inhibits FasL-induced apoptosis. The DcR3 gene was amplified in about half of 35 primary lung and colon tumours studied, and DcR3 messenger RNA was expressed in malignant tissue. Thus, certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing a decoy receptor that blocks FasL.

823 citations

Journal ArticleDOI
TL;DR: Findings suggest that UCP4 may be involved in thermoregulatory heat production and metabolism in the brain.

380 citations

Journal ArticleDOI
TL;DR: These findings are consistent with the notion that UCP4 and UCP5 may be involved in tissue‐specific thermoregulation and metabolic changes associated with nutritional status.
Abstract: Mitochondrial uncoupling proteins have been implicated in the maintenance of metabolic rate and adaptational thermoregulation. We recently reported the identification of a brain-specific mitochondrial uncoupling protein homologue, UCP4. Here we characterized another newly described member of the uncoupling protein family, termed UCP5 (also called BMCP1). UCP5 transcripts are present in multiple human and mouse tissues, with an especially high abundance in the brain and testis. Expression of UCP5 in mammalian cells reduces the mitochondrial membrane potential. Multiple isoforms of UCP5 were identified and exhibited tissue-specific distribution and different potency in reduction of membrane potential. Furthermore, the mRNA abundance of both UCP4 and UCP5 is modulated by nutritional status or temperature in a tissue-specific manner in mice. Brain UCP4 and UCP5 mRNA transcripts rose by 1.5- and 1.7-fold, respectively, and liver UCP5 expression increased by 1.8-fold in response to acute cold exposure. A high-f...

162 citations

Journal ArticleDOI
TL;DR: In this paper, the authors designed and generated multivalent human IgG Ab forms with tandem Fab repeats with the aim of mimicking cross-linked Abs to improve the therapeutic potency of these types of Abs.
Abstract: Some Abs are more efficacious after being cross-linked to form dimers or multimers, presumably as a result of binding to and clustering more surface target to either amplify or diversify cellular signaling. To improve the therapeutic potency of these types of Abs, we designed and generated Abs that express tandem Fab repeats with the aim of mimicking cross-linked Abs. The versatile design of the system enables the creation of a series of multivalent human IgG Ab forms including tetravalent IgG1, tetravalent F(ab')2, and linear Fab multimers with either three or four consecutively linked Fabs. The multimerized Abs target the cell surface receptors HER2, death receptor 5, and CD20, and are more efficacious than their parent mAbs in triggering antitumor cellular responses, indicating they could be useful both as reagents for study as well as novel therapeutics.

144 citations


Cited by
More filters
Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

Journal ArticleDOI
17 May 2001-Nature
TL;DR: Deregulated cell proliferation provides a minimal 'platform' necessary to support further neoplastic progression and should be targeted withroit targeting to have potent and specific therapeutic consequences.
Abstract: Beneath the complexity and idiopathy of every cancer lies a limited number of 'mission critical' events that have propelled the tumour cell and its progeny into uncontrolled expansion and invasion One of these is deregulated cell proliferation, which, together with the obligate compensatory suppression of apoptosis needed to support it, provides a minimal 'platform' necessary to support further neoplastic progression Adroit targeting of these critical events should have potent and specific therapeutic consequences

3,151 citations

Journal ArticleDOI
TL;DR: This review focuses on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway.
Abstract: ▪ Abstract Caspase activation plays a central role in the execution of apoptosis. The key components of the biochemical pathways of caspase activation have been recently elucidated. In this review, we focus on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway. In the cell surface death receptor pathway, activation of caspase-8 following its recruitment to the death-inducing signaling complex (DISC) is the critical event that transmits the death signal. This event is regulated at several different levels by various viral and mammalian proteins. Activated caspase-8 can activate downstream caspases by direct cleavage or indirectly by cleaving Bid and inducing cytochrome c release from the mitochondria. In the mitochondrial-initiated pathway, caspase activation is triggered by the formation of a multimeric Apaf-1/cytochrome c complex that is fully functional in recruiting and activating procaspase-9. Activated caspase-9 wil...

2,579 citations

Journal ArticleDOI
07 Aug 2006-Oncogene
TL;DR: Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.
Abstract: Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homeostasis. One of the most important advances in cancer research in recent years is the recognition that cell death mostly by apoptosis is crucially involved in the regulation of tumor formation and also critically determines treatment response. Killing of tumor cells by most anticancer strategies currently used in clinical oncology, for example, chemotherapy, γ-irradiation, suicide gene therapy or immunotherapy, has been linked to activation of apoptosis signal transduction pathways in cancer cells such as the intrinsic and/or extrinsic pathway. Thus, failure to undergo apoptosis may result in treatment resistance. Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.

2,125 citations

Journal ArticleDOI
TL;DR: What are the molecular mechanisms of tumour resistance to apoptosis and how can the authors use this knowledge to resensitize tumour cells to cancer therapy?
Abstract: Every cell in a multicellular organism has the potential to die by apoptosis, but tumour cells often have faulty apoptotic pathways. These defects not only increase tumour mass, but also render the tumour resistant to therapy. So, what are the molecular mechanisms of tumour resistance to apoptosis and how can we use this knowledge to resensitize tumour cells to cancer therapy?

1,948 citations