scispace - formally typeset
Search or ask a question
Author

Steven W. Edwards

Bio: Steven W. Edwards is an academic researcher from University of Liverpool. The author has contributed to research in topics: Respiratory burst & Apoptosis. The author has an hindex of 56, co-authored 225 publications receiving 11278 citations. Previous affiliations of Steven W. Edwards include Edge Hill University & Cardiff University.


Papers
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Single-cell time-lapse imaging and computational modeling of NF-κB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IκBα transcription.
Abstract: Signaling by the transcription factor nuclear factor kappa B (NF-kappaB) involves its release from inhibitor kappa B (IkappaB) in the cytosol, followed by translocation into the nucleus. NF-kappaB regulation of IkappaBalpha transcription represents a delayed negative feedback loop that drives oscillations in NF-kappaB translocation. Single-cell time-lapse imaging and computational modeling of NF-kappaB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IkappaBalpha transcription. Transcription of target genes depended on oscillation persistence, involving cycles of RelA phosphorylation and dephosphorylation. The functional consequences of NF-kappaB signaling may thus depend on number, period, and amplitude of oscillations.

1,146 citations

Journal ArticleDOI
TL;DR: Drugs already used to treat RA down-regulate many neutrophil functions, including migration to the joint, degranulation and production of inflammatory mediators, and these cells should be considered as important targets for the development of new therapies in the future.
Abstract: In inflammatory conditions such as RA, the neutrophil has tended to be dismissed as a short-lived, terminally differentiated, irrelevant bystander cell. However, this is clearly not the case. A better understanding of the complex heterogeneous pathways and processes that constitute RA, in parallel with a more sophisticated knowledge of neutrophil biology has identified many potential roles for these cells in the persistence of inflammation and progression of joint damage, which should not be underestimated. Not only are neutrophils found in high numbers within the rheumatoid joint, both in synovial tissue and in joint fluid, they have a huge potential to directly inflict damage to tissue, bone and cartilage via the secretion of proteases and toxic oxygen metabolites, as well as driving inflammation through antigen presentation and secretion of cytokines, chemokines, prostaglandins and leucotrienes. Drugs already used to treat RA down-regulate many neutrophil functions, including migration to the joint, degranulation and production of inflammatory mediators, and these cells should be considered as important targets for the development of new therapies in the future.

696 citations

Journal ArticleDOI
TL;DR: What is known about the regulation of myeloid cell leukemia 1 expression and function is reviewed, with particular focus on post‐translational modifications and how phosphorylation interconnects the complex molecular control of Mcl‐1 with cellular state.

490 citations

Journal ArticleDOI
TL;DR: This review summarises current knowledge on the molecular mechanisms and components of neutrophil apoptosis.

480 citations

Journal ArticleDOI
TL;DR: In addition to their cytotoxic and immunoregulatory role in RA, neutrophils may be a source of the autoantigens that drive the autoimmune processes underlying this disease.
Abstract: Of all cells implicated in the pathology of rheumatoid arthritis (RA), neutrophils possess the greatest cytotoxic potential, owing to their ability to release degradative enzymes and reactive oxygen species. Neutrophils also contribute to the cytokine and chemokine cascades that accompany inflammation, and regulate immune responses via cell-cell interactions. Emerging evidence suggests that neutrophils also have a previously unrecognised role in autoimmune diseases: neutrophils can release neutrophil extracellular traps (NETs) containing chromatin associated with granule enzymes, which not only kill extracellular microorganisms but also provide a source of autoantigens. For example, citrullinated proteins that can act as neoepitopes in loss of immune tolerance are generated by peptidylarginine deiminases, which replace arginine with citrulline residues, within neutrophils. Indeed, antibodies to citrullinated proteins can be detected before the onset of symptoms in patients with RA, and are predictive of erosive disease. Neutrophils from patients with RA have an increased tendency to form NETs containing citrullinated proteins, and sera from such patients contain autoantibodies that recognize these proteins. Thus, in addition to their cytotoxic and immunoregulatory role in RA, neutrophils may be a source of the autoantigens that drive the autoimmune processes underlying this disease.

423 citations


Cited by
More filters
Book ChapterDOI
TL;DR: The chapter discusses the metabolism of transition metals, such as iron and copper, and the chelation therapy that is an approach to site-specific antioxidant protection.
Abstract: Publisher Summary This chapter discusses the role of free radicals and catalytic metal ions in human disease. The importance of transition metal ions in mediating oxidant damage naturally leads to the question as to what forms of such ions might be available to catalyze radical reactions in vivo . The chapter discusses the metabolism of transition metals, such as iron and copper. It also discusses the chelation therapy that is an approach to site-specific antioxidant protection. The detection and measurement of lipid peroxidation is the evidence most frequently cited to support the involvement of free radical reactions in toxicology and in human disease. A wide range of techniques is available to measure the rate of this process, but none is applicable to all circumstances. The two most popular are the measurement of diene conjugation and the thiobarbituric acid (TBA) test, but they are both subject to pitfalls, especially when applied to human samples. The chapter also discusses the essential principles of the peroxidation process. When discussing lipid peroxidation, it is essential to use clear terminology for the sequence of events involved; an imprecise use of terms such as initiation has caused considerable confusion in the literature. In a completely peroxide-free lipid system, first chain initiation of a peroxidation sequence in a membrane or polyunsaturated fatty acid refers to the attack of any species that has sufficient reactivity to abstract a hydrogen atom from a methylene group.

5,033 citations

Journal ArticleDOI
TL;DR: These recommendations intend informing rheumatologists, patients, national rheumology societies, hospital officials, social security agencies and regulators about EULAR's most recent consensus on the management of RA, aimed at attaining best outcomes with current therapies.
Abstract: In this article, the 2010 European League against Rheumatism (EULAR) recommendations for the management of rheumatoid arthritis (RA) with synthetic and biological disease-modifying antirheumatic drugs (sDMARDs and bDMARDs, respectively) have been updated. The 2013 update has been developed by an international task force, which based its decisions mostly on evidence from three systematic literature reviews (one each on sDMARDs, including glucocorticoids, bDMARDs and safety aspects of DMARD therapy); treatment strategies were also covered by the searches. The evidence presented was discussed and summarised by the experts in the course of a consensus finding and voting process. Levels of evidence and grades of recommendations were derived and levels of agreement (strengths of recommendations) were determined. Fourteen recommendations were developed (instead of 15 in 2010). Some of the 2010 recommendations were deleted, and others were amended or split. The recommendations cover general aspects, such as attainment of remission or low disease activity using a treat-to-target approach, and the need for shared decision-making between rheumatologists and patients. The more specific items relate to starting DMARD therapy using a conventional sDMARD (csDMARD) strategy in combination with glucocorticoids, followed by the addition of a bDMARD or another csDMARD strategy (after stratification by presence or absence of adverse risk factors) if the treatment target is not reached within 6 months (or improvement not seen at

4,730 citations

Journal ArticleDOI
TL;DR: With increasing frequency, the human neutrophil is being implicated as a mediator of tissue-destructive events in inflammatory diseases ranging from rheumatoid arthritis and myocardial reperfusion injury to respiratory distress syndromes, blistering skin disorders, and ulcerative colitis.
Abstract: WITH increasing frequency, the human neutrophil is being implicated as a mediator of tissue-destructive events in inflammatory diseases ranging from rheumatoid arthritis and myocardial reperfusion injury to respiratory distress syndromes, blistering skin disorders, and ulcerative colitis.1 , 2 In each of these diseases, as well as a variety of other acute inflammatory disorders, important components of these pathologic processes are being linked to the neutrophil's ability to release a complex assortment of agents that can destroy normal cells and dissolve connective tissues. Although these toxins normally defend the host against invading microbes, the neutrophil has little intrinsic ability to differentiate between foreign . . .

4,349 citations

Journal ArticleDOI
TL;DR: Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
Abstract: ▪ Abstract At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxid...

4,027 citations

Journal ArticleDOI
TL;DR: Network motifs are reviewed, suggesting that they serve as basic building blocks of transcription networks, including signalling and neuronal networks, in diverse organisms from bacteria to humans.
Abstract: Transcription regulation networks control the expression of genes. The transcription networks of well-studied microorganisms appear to be made up of a small set of recurring regulation patterns, called network motifs. The same network motifs have recently been found in diverse organisms from bacteria to humans, suggesting that they serve as basic building blocks of transcription networks. Here I review network motifs and their functions, with an emphasis on experimental studies. Network motifs in other biological networks are also mentioned, including signalling and neuronal networks.

3,076 citations