scispace - formally typeset
Search or ask a question
Author

Steven W. Keller

Bio: Steven W. Keller is an academic researcher from University of Missouri. The author has contributed to research in topics: Coordination sphere & Crystal structure. The author has an hindex of 17, co-authored 31 publications receiving 2365 citations. Previous affiliations of Steven W. Keller include Pennsylvania State University & University of Texas at Austin.

Papers
More filters
Journal ArticleDOI
12 Mar 1993-Science
TL;DR: The trend in modern solid-state synthesis resembles increasingly the approach used in small-molecule chemistry, in the sense that attention to reaction mechanism and the use of molecular building blocks result in an ability to prepare new materials of designed structure.
Abstract: Solid-state compounds have historically been prepared through high-temperature solid-solid reactions. New mechanistic understanding of these reactions suggests possible routes to metastable compositions and structures as well as to thermodynamically stable, low-temperature phases that decompose at higher temperatures. Intermediate-temperature synthetic techniques, including flux and hydrothermal methods, as well as low-temperature intercalation and coordination reactions, have recently been developed and have been used to prepare unprecedented materials with interesting electronic, optical, and catalytic properties. The trend in modern solid-state synthesis resembles increasingly the approach used in small-molecule chemistry, in the sense that attention to reaction mechanism and the use of molecular building blocks result in an ability to prepare new materials of designed structure.

511 citations

Journal ArticleDOI
TL;DR: In this article, a multilayer thin film consisting of anionic α-zirconium phosphate (α-ZrP) sheets and polycations (poly(allylamine hydrochloride) (PAH), cytochrome c) were characterized by transmission electron microscopy (TEM), ellipsometry, UV−visible absorbance spectroscopy, reflectance FT-IR, XPS, and X-ray diffraction.
Abstract: Monolayer and multilayer thin films consisting of anionic α-zirconium phosphate (α-ZrP) sheets and polycations (poly(allylamine hydrochloride) (PAH), cytochrome c) were characterized by transmission electron microscopy (TEM), ellipsometry, UV−visible absorbance spectroscopy, reflectance FT-IR, XPS, and X-ray diffraction. Titration and powder X-ray diffraction experiments confirm that exfoliation of α-ZrP begins to occur when enough tetra(n-butylammonium) hydroxide (TBA+OH-) has been added to exceed single-layer packing of TBA+ ions (x ≈ 0.50) in the intercalation compound Zr(HPO4)2-x(TBA+PO4-)x·nH2O. The identical contrast of many sheets in TEM micrographs suggests that the suspension is unilamellar. Alternately dipping cationic substrates into α-ZrP-containing suspensions and aqueous PAH gives a multilayer film that resembles the corresponding bulk intercalation compound. X-ray photoelectron spectra of multilayer films show that they are Zr-rich, relative to α-ZrP, consistent with some corrosion during t...

235 citations

Journal ArticleDOI
TL;DR: The spherical phosphotungstate ion, PW12O40(3-), has been used as a non-coordinating anionic template for the construction of a novel, three-dimensional Cu(I) coordination polymer.

149 citations


Cited by
More filters
Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Abstract: The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

8,013 citations

Journal ArticleDOI
18 Jan 2002-Science
TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract: A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

6,922 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations