scispace - formally typeset
Search or ask a question
Author

Stewart W. Williams

Bio: Stewart W. Williams is an academic researcher from Cranfield University. The author has contributed to research in topics: Welding & Residual stress. The author has an hindex of 44, co-authored 206 publications receiving 7559 citations. Previous affiliations of Stewart W. Williams include BAE Systems & University of Bedfordshire.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the benefits of non-destructive testing, online monitoring and in situ machining are discussed, and strategies on how to manage residual stress, improve mechanical properties and eliminate defects such as porosity are suggested.
Abstract: Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to low and medium complexity parts. A variety of components have been successfully manufactured with this process, including Ti–6Al–4V spars and landing gear assemblies, aluminium wing ribs, steel wind tunnel models and cones. Strategies on how to manage residual stress, improve mechanical properties and eliminate defects such as porosity are suggested. Finally, the benefits of non-destructive testing, online monitoring and in situ machining are discussed.

1,051 citations

Journal ArticleDOI
TL;DR: In this paper, the macrostructure, microstructure and mechanical properties of a Ti-6Al-4V alloy after WAAM deposition have been investigated, and the average yield and ultimate tensile strengths of the as-deposited material were found to be slightly lower than those for a forged Ti- 6Al 4V bar (MIL-T 9047), however, the ductility was similar and the mean fatigue life was significantly higher.
Abstract: Wire and arc additive manufacturing (WAAM) is a novel manufacturing technique in which large metal components can be fabricated layer by layer. In this study, the macrostructure, microstructure, and mechanical properties of a Ti-6Al-4V alloy after WAAM deposition have been investigated. The macrostructure of the arc-deposited Ti-6Al-4V was characterized by epitaxial growth of large columnar prior-β grains up through the deposited layers, while the microstructure consisted of fine Widmanstatten α in the upper deposited layers and a banded coarsened Widmanstatten lamella α in the lower layers. This structure developed due to the repeated rapid heating and cooling thermal cycling that occurs during the WAAM process. The average yield and ultimate tensile strengths of the as-deposited material were found to be slightly lower than those for a forged Ti-6Al-4V bar (MIL-T 9047); however, the ductility was similar and, importantly, the mean fatigue life was significantly higher. A small number of WAAM specimens exhibited early fatigue failure, which can be attributed to the rare occurrence of gas pores formed during deposition.

512 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the thermo-mechanical behavior of the multi-layer wall structure made by the wire and arc additive layer manufacturing (WAALM) process.

449 citations

Journal ArticleDOI
TL;DR: In this paper, a working envelope for the process using Ti-6Al-4V was developed, and regression models were calculated for total wall width, effective wall width and layer height.

434 citations

Journal ArticleDOI
TL;DR: In this article, the effect of arc mode in cold metal transfer (CMT) process on the porosity characteristic of additively manufactured Al-6.3%Cu alloy has been systematically investigated.
Abstract: In this study, the effect of arc mode in cold metal transfer (CMT) process on the porosity characteristic of additively manufactured Al-6.3%Cu alloy has been systematically investigated. The variants include conventional CMT, CMT pulse (CMT-P), CMT advanced (CMT-ADV) and CMT pulse advanced (CMT-PADV) and experiments were performed on both single layer deposits and multilayer deposits. The mechanism of porosity generation using the CMT arc mode variants is discussed. It was found that deposit porosity is significantly influenced by the arc mode type of CMT process. Conventional CMT is not suitable for the additive manufacturing process because it produces a large amount of gas pores, even in single layer deposit. CMT-PADV proved to be the most suitable process for depositing aluminium alloy due to its excellent performance in controlling porosity. With correct parameter, setting the gas pores can be eliminated. It was found that the key factors that enable the CMT-PADV process to control the porosity efficiently are the low heat input, a fine equiaxed grain structure and effective oxide cleaning of the wire.

318 citations


Cited by
More filters
Book
30 Mar 2007
TL;DR: Friction stir welding (FSW) is a relatively new solid-state joining process that is used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding as discussed by the authors.
Abstract: Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. Recently, friction stir processing (FSP) was developed for microstructural modification of metallic materials. In this review article, the current state of understanding and development of the FSW and FSP are addressed. Particular emphasis has been given to: (a) mechanisms responsible for the formation of welds and microstructural refinement, and (b) effects of FSW/FSP parameters on resultant microstructure and final mechanical properties. While the bulk of the information is related to aluminum alloys, important results are now available for other metals and alloys. At this stage, the technology diffusion has significantly outpaced the fundamental understanding of microstructural evolution and microstructure–property relationships.

4,750 citations

Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations