scispace - formally typeset
Search or ask a question
Author

Stijn Temmerman

Bio: Stijn Temmerman is an academic researcher from University of Antwerp. The author has contributed to research in topics: Salt marsh & Marsh. The author has an hindex of 40, co-authored 135 publications receiving 7335 citations. Previous affiliations of Stijn Temmerman include Katholieke Universiteit Leuven & The Catholic University of America.
Topics: Salt marsh, Marsh, Wetland, Storm surge, Ecosystem


Papers
More filters
Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: It is argued that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that it should be implemented globally and on a large scale.
Abstract: The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

1,178 citations

Journal ArticleDOI
TL;DR: Kirwan et al. as discussed by the authors used simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level, finding that nonlinear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea level rise where suspended sediment concentrations are greater than ∼20 mg/L.
Abstract: [1] Assumptions of a static landscape inspire predictions that about half of the world’s coastal wetlands will submerge during this century in response to sea‐level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea‐level assessments, we find that non‐linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea‐ level rise where suspended sediment concentrations are greater than ∼20 mg/L. Under scenarios of more rapid sea‐level rise (e.g., those that include ice sheet melting), marsheswill likelysubmerge neartheend ofthe 21stcentury. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processestomodifytheirphysicalenvironment.Citation: Kirwan, M. L., G. R. Guntenspergen, A. D’Alpaos, J. T. Morris, S. M. Mudd, and S. Temmerman (2010), Limits on the adaptability of coastal marshes to rising sea level, Geophys. Res. Lett., 37, L23401,

697 citations

Journal ArticleDOI
TL;DR: A broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers is presented in this article, focusing on the coupling between geomorphological and ecological processes and how these feedbacks are included in predictive models of landform evolution.
Abstract: Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

571 citations

Journal ArticleDOI
13 Sep 2018-Nature
TL;DR: A global modelling approach shows that in response to rises in global sea level, gains of up to 60% in coastal wetland areas are possible, if appropriate coastal management solutions are developed to help support wetland resilience.
Abstract: The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services1-3 These projections do not necessarily take into account all essential geomorphological4-7 and socio-economic system feedbacks8 Here we present an integrated global modelling approach that considers both the ability of coastal wetlands to build up vertically by sediment accretion, and the accommodation space, namely, the vertical and lateral space available for fine sediments to accumulate and be colonized by wetland vegetation We use this approach to assess global-scale changes in coastal wetland area in response to global sea-level rise and anthropogenic coastal occupation during the twenty-first century On the basis of our simulations, we find that, globally, rather than losses, wetland gains of up to 60 per cent of the current area are possible, if more than 37 per cent (our upper estimate for current accommodation space) of coastal wetlands have sufficient accommodation space, and sediment supply remains at present levels In contrast to previous studies1-3, we project that until 2100, the loss of global coastal wetland area will range between 0 and 30 per cent, assuming no further accommodation space in addition to current levels Our simulations suggest that the resilience of global wetlands is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone and such infrastructure is expected to change over the twenty-first century Rather than being an inevitable consequence of global sea-level rise, our findings indicate that large-scale loss of coastal wetlands might be avoidable, if sufficient additional accommodation space can be created through careful nature-based adaptation solutions to coastal management

550 citations

Journal ArticleDOI
TL;DR: In this paper, the authors argue that coastal marsh vulnerability is often overstated because assessments generally neglect feedback processes known to accelerate soil building with sea level rise, as well as the potential for marshes to migrate inland.
Abstract: In this Perspective it is argued that coastal marsh vulnerability is often overstated because assessments generally neglect feedback processes known to accelerate soil building with sea level rise, as well as the potential for marshes to migrate inland. Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

490 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A copy of the Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?".
Abstract: A copy of Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?" It said: "… Young friends, you are certainly very concerned about this problem'. So, we would like you to meet the young women workers Meng Xiaoyu and Meng Yamei and the older cadre Miss Feng. They are the three leading characters in the short story ‘The Place of Love.’ Through the description of the love lives of these three, the story induces us to think deeply about two questions that merit further examination.

1,528 citations

Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea- level rise, and socio-economic factors that influence transgression into adjacent uplands.
Abstract: Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands to actively resist the deleterious effects of sea-level rise. Humans alter the strength of these feedbacks by changing the climate, nutrient inputs, sediment delivery and subsidence rates. Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea-level rise, and socio-economic factors that influence transgression into adjacent uplands.

1,303 citations

Journal ArticleDOI
TL;DR: In this article, the potential benefits of conservation, restoration and use of marine vegetated habitats for coastal protection and climate change mitigation are assessed, and the potential benefit of using these habitats in eco-engineering solutions for coast protection is discussed.
Abstract: Marine vegetated habitats occupy a small fraction of the ocean surface, but contribute about 50% of the carbon that is buried in marine sediments. In this Review the potential benefits of conservation, restoration and use of these habitats for coastal protection and climate change mitigation are assessed. Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

1,239 citations

Journal ArticleDOI
TL;DR: Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
Abstract: In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world’s lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth’s surface, these ecosystems host at least 9.5% of the Earth’s described animal species. Furthermore, using the World Wide Fund for Nature’s Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies,managed relocation of species) that have been met with varying levels of success.Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.

1,230 citations

Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: It is argued that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that it should be implemented globally and on a large scale.
Abstract: The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

1,178 citations