scispace - formally typeset
Search or ask a question
Author

Strahinja Dosen

Other affiliations: University of Göttingen
Bio: Strahinja Dosen is an academic researcher from Aalborg University. The author has contributed to research in topics: Computer science & Medicine. The author has an hindex of 31, co-authored 151 publications receiving 2979 citations. Previous affiliations of Strahinja Dosen include University of Göttingen.


Papers
More filters
Journal ArticleDOI
TL;DR: There will emerge that there is a gap between industrial and academic achievements and that this gap will continue to expand unless a change of focus in systems for myoelectric control occurs.
Abstract: In this article, the basic concept of myoelectric control and the state of the art in both industry and academia will be presented. It will emerge that there is a gap between industrial and academic achievements and that this gap will continue to expand unless a change of focus in systems for myoelectric control occurs.

416 citations

Journal ArticleDOI
TL;DR: The first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI) was convened, hosted by the International Conference on Rehabilitation Robotics, with an overview of the state of the art and future perspectives of such interfaces.
Abstract: One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive PNS-Machine Interfaces was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PNS-Machine Interface (PMI) has been selected to denote human-machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the peripheral nervous system (PNS) in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.

193 citations

01 Jan 2012
TL;DR: In this paper, the authors have identified some of the reasons that are relevant for explaining the seeming contradiction of the clinical and commercial impact of myoelectric control from EMG, and raised the awareness for the necessity of additional parallel research efforts toward issues whose importance for practical implementations has been underestimated.
Abstract: SUMMARY AND CONCLUSIONS Myoelectric control has a great poten-tial for improving the quality of life of persons with limb deficiency. However, despite the tremendous success in obtaining almost perfect classification accuracy from EMG, its clinical and commercial impact is still limited. We have identified some of the reasons that we believe are relevant for explaining this seeming contradiction. The major-ity of current pattern classification methods do not provide simultaneous and proportional control, are not imple-mented with sensory feedback, do not adapt to the changes in EMG signal characteristics, and do not integrate other sensor modalities to allow com-plex actions. These problems hinder the possibility of using such paradigm in applications that aim at clinical and commercial use. Academic research has focused in the past decades on refining classification accuracy and has rele-gated to secondary importance the aspects outlined in this article. As such, a gap between the academia and the industry state of the art has been gener-ated unnecessarily. This gap could be filled by addressing the specific needs of intuitive myoelectric control and sys-tem robustness. With this position, we are not questioning the need of further research within pattern classification of EMG. Indeed, three of the four demands that we have identified can be imple-mented within a pattern classification paradigm. Rather, our intention is to raise the awareness for the necessity of additional parallel research efforts toward issues whose importance for practical implementations has been underestimated.

164 citations

Journal ArticleDOI
TL;DR: The original outcome of this research is a novel controller empowered by vision and reasoning and capable of high-level analysis and autonomous decision making and selecting the grasp type and size.
Abstract: Dexterous prosthetic hands that were developed recently, such as SmartHand and i-LIMB, are highly sophisticated; they have individually controllable fingers and the thumb that is able to abduct/adduct. This flexibility allows implementation of many different grasping strategies, but also requires new control algorithms that can exploit the many degrees of freedom available. The current study presents and tests the operation of a new control method for dexterous prosthetic hands. The central component of the proposed method is an autonomous controller comprising a vision system with rule-based reasoning mounted on a dexterous hand (CyberHand). The controller, termed cognitive vision system (CVS), mimics biological control and generates commands for prehension. The CVS was integrated into a hierarchical control structure: 1) the user triggers the system and controls the orientation of the hand; 2) a high-level controller automatically selects the grasp type and size; and 3) an embedded hand controller implements the selected grasp using closed-loop position/force control. The operation of the control system was tested in 13 healthy subjects who used Cyberhand, attached to the forearm, to grasp and transport 18 objects placed at two different distances. The system correctly estimated grasp type and size (nine commands in total) in about 84% of the trials. In an additional 6% of the trials, the grasp type and/or size were different from the optimal ones, but they were still good enough for the grasp to be successful. If the control task was simplified by decreasing the number of possible commands, the classification accuracy increased (e.g., 93% for guessing the grasp type only). The original outcome of this research is a novel controller empowered by vision and reasoning and capable of high-level analysis (i.e., determining object properties) and autonomous decision making (i.e., selecting the grasp type and size). The automatic control eases the burden from the user and, as a result, the user can concentrate on what he/she does, not on how he/she should do it. The tests showed that the performance of the controller was satisfactory and that the users were able to operate the system with minimal prior training.

116 citations

Journal ArticleDOI
TL;DR: It is hypothesized that sensors-driven multichannel electrical stimulation could stabilize affected joints by activating the antagonistic muscles during involuntary activation of agonist muscles and vice versa (out-of-phase stimulation) and here, the new system and testing of its operation are presented.
Abstract: Pathological tremor is manifested as an involuntary oscillation of one or more body parts. Tremor greatly decreases the quality of life and often prevents the patient from performing daily activities. We hypothesized that sensors-driven multichannel electrical stimulation could stabilize affected joints by activating the antagonistic muscles during involuntary activation of agonist muscles and vice versa (out-of-phase stimulation). Here, we present the new system (hardware and software) and the testing of its operation. The hardware consists of a multichannel stimulator and inertial sensors for feedback. The software implements adaptive sensors-driven control for the out-of-phase stimulation. The system was initially applied to healthy persons at the wrist and elbow joints to test the efficiency of the hardware and software solutions. Predefined rhythmic stimulation resulted in tremulous movement, which subjects could not prevent; yet, they were still able to functionally use their hand. The system was then applied to seven patients with Parkinson's disease and essential tremor for minimization of the wrist joint tremor. In six patients, the adaptive out-of-phase stimulation resulted in a significant decrease in the amplitude of tremor (67 ± 13%). In one patient, the stimulation did not result in the expected reduction of tremor.

108 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

01 Jan 2016
TL;DR: Biomechanics and motor control of human movement is downloaded so that people can enjoy a good book with a cup of tea in the afternoon instead of juggling with some malicious virus inside their laptop.
Abstract: Thank you very much for downloading biomechanics and motor control of human movement. Maybe you have knowledge that, people have search hundreds times for their favorite books like this biomechanics and motor control of human movement, but end up in infectious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they juggled with some malicious virus inside their laptop.

1,689 citations

Journal ArticleDOI
04 Feb 2014-PLOS ONE
TL;DR: There is strong evidence for PT interventions favoring intensive high repetitive task-oriented and task-specific training in all phases poststroke, and suggestions for prioritizing PT stroke research are given.
Abstract: Background Physical therapy (PT) is one of the key disciplines in interdisciplinary stroke rehabilitation. The aim of this systematic review was to provide an update of the evidence for stroke rehabilitation interventions in the domain of PT.

882 citations

Journal ArticleDOI
19 Feb 2014
TL;DR: The conclusion is that the gap between industry and academia is due to the relatively small functional improvement in daily situations that academic systems offer, despite the promising laboratory results, at the expense of a substantial reduction in robustness.
Abstract: Despite not recording directly from neural cells, the surface electromyogram (EMG) signal contains information on the neural drive to muscles, i.e., the spike trains of motor neurons. Using this property, myoelectric control consists of the recording of EMG signals for extracting control signals to command external devices, such as hand prostheses. In commercial control systems, the intensity of muscle activity is extracted from the EMG and used for single degrees of freedom activation (direct control). Over the past 60 years, academic research has progressed to more sophisticated approaches but, surprisingly, none of these academic achievements has been implemented in commercial systems so far. We provide an overview of both commercial and academic myoelectric control systems and we analyze their performance with respect to the characteristics of the ideal myocontroller. Classic and relatively novel academic methods are described, including techniques for simultaneous and proportional control of multiple degrees of freedom and the use of individual motor neuron spike trains for direct control. The conclusion is that the gap between industry and academia is due to the relatively small functional improvement in daily situations that academic systems offer, despite the promising laboratory results, at the expense of a substantial reduction in robustness. None of the systems so far proposed in the literature fulfills all the important criteria needed for widespread acceptance by the patients, i.e. intuitive, closed-loop, adaptive, and robust real-time ( 200 ms delay) control, minimal number of recording electrodes with low sensitivity to repositioning, minimal training, limited complexity and low consumption. Nonetheless, in recent years, important efforts have been invested in matching these criteria, with relevant steps forwards.

769 citations

Journal ArticleDOI
17 Sep 2013-Sensors
TL;DR: This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG messages.
Abstract: Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.

654 citations