scispace - formally typeset
Search or ask a question
Author

Stuart Bevan

Other affiliations: Novartis, Yale University, University College London  ...read more
Bio: Stuart Bevan is an academic researcher from Wolfson Centre for Age-Related Diseases. The author has contributed to research in topics: TRPV1 & Capsaicin. The author has an hindex of 64, co-authored 136 publications receiving 19032 citations. Previous affiliations of Stuart Bevan include Novartis & Yale University.


Papers
More filters
Journal ArticleDOI
21 Mar 2003-Cell
TL;DR: The characterization of ANKTM1 is described, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8, which is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM 8.

2,290 citations

Journal ArticleDOI
08 Mar 2002-Cell
TL;DR: This work describes the cloning and characterization of TRPM8, a distant relative of VR1 that is specifically expressed in a subset of pain- and temperature-sensing neurons and implicates an expanded role for this family of ion channels in somatic sensory detection.

2,065 citations

Journal ArticleDOI
14 Jun 2002-Science
TL;DR: The cloning and characterization of a novel thermosensitive TRP channel, TRPV3, which is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures is described.
Abstract: Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.

868 citations

Journal ArticleDOI
TL;DR: Electrophysiological methods and measurements of intracellular calcium concentration show that TRPA1 is activated by several classes of endogenous thiol-reactive molecules and demonstrate that multiple agents produced during episodes of oxidative stress can activate TRpa1 expressed in sensory neurons.
Abstract: Transient receptor potential A1 (TRPA1) is expressed in a subset of nociceptive sensory neurons where it acts as a sensor for environmental irritants, including acrolein, and some pungent plant ingredients such as allyl isothiocyanate and cinnamaldehyde. These exogenous compounds activate TRPA1 by covalent modification of cysteine residues. We have used electrophysiological methods and measurements of intracellular calcium concentration ([Ca2+]i) to show that TRPA1 is activated by several classes of endogenous thiol-reactive molecules. TRPA1 was activated by hydrogen peroxide (H2O2; EC50, 230 μm), by endogenously occurring alkenyl aldehydes (EC50: 4-hydroxynonenal 19.9 μm, 4-oxo-nonenal 1.9 μm, 4-hydroxyhexenal 38.9 μm) and by the cyclopentenone prostaglandin, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, EC50: 5.6 μm). The effect of H2O2 was reversed by treatment with dithiothreitol indicating that H2O2 acts by promoting the formation of disulfide bonds whereas the actions of the alkenyl aldehydes and 15d-PGJ2 were not reversed, suggesting that these agents form Michael adducts. H2O2 and the naturally occurring alkenyl aldehydes and 15d-PGJ2 acted on a subset of isolated rat and mouse sensory neurons [∼25% of rat dorsal root ganglion (DRG) and ∼50% of nodose ganglion neurons] to evoke a depolarizing inward current and an increase in [Ca2+]i in TRPA1 expressing neurons. The abilities of H2O2, alkenyl aldehydes and 15d-PGJ2 to raise [Ca2+]i in mouse DRG neurons were greatly reduced in neurons from trpa1−/− mice. Furthermore, intraplantar injection of either H2O2 or 15d-PGJ2 evoked a nocifensive/pain response in wild-type mice, but not in trpa1−/− mice. These data demonstrate that multiple agents produced during episodes of oxidative stress can activate TRPA1 expressed in sensory neurons.

643 citations

Journal ArticleDOI
TL;DR: The present study shows the capsazepine acts as a competitive antagonist of capsaicin, with significant effects on the efflux of 86Rb+ from cultured DRG neurones evoked either by depolarization with high (50 mm) K+ solutions or by acidification of the external medium to pH 5.6.
Abstract: 1. Capsazepine is a synthetic analogue of the sensory neurone excitotoxin, capsaicin. The present study shows the capsazepine acts as a competitive antagonist of capsaicin. 2. Capsazepine (10 microM) reversibly reduced or abolished the current response to capsaicin (500 nM) of voltage-clamped dorsal root ganglion (DRG) neurones from rats. In contrast, the responses to 50 microM gamma-aminobutyric acid (GABA) and 5 microM adenosine 5'-triphosphate (ATP) were unaffected. 3. The effects of capsazepine were examined quantitatively with radioactive ion flux experiments. Capsazepine inhibited the capsaicin (500 nM)-induced 45Ca2+ uptake in cultures of rat DRG neurones with an IC50 of 420 +/- 46 nM (mean +/- s.e.mean, n = 6). The 45Ca2+ uptake evoked by resiniferatoxin (RTX), a potent capsaicin-like agonist was also inhibited. (Log concentration)-effect curves for RTX (0.3 nM-1 microM) were shifted in a competitive manner by capsazepine. The Schild plot of the data had a slope of 1.08 +/- 0.15 (s.e.) and gave an apparent Kd estimate for capsazepine of 220 nM (95% confidence limits, 57-400 nM). 4. Capsazepine also inhibited the capsaicin- and RTX-evoked efflux of 86Rb+ from cultured DRG neurones. The inhibition appeared to be competitive and Schild plots yielded apparent Kd estimates of 148 nM (95% confidence limits, 30-332 nM) with capsaicin as the agonist and 107 nM (95% confidence limits, 49-162 nM) with RTX as agonist. 5. A similar competitive inhibition by capsazepine was seen for capsaicin-induced [14C]-guanidinium efflux from segments of adult rat vagus nerves (apparent Kd = 690 nM; 95% confidence limits, 63 nM-1.45 microM). No significant difference was noted in the apparent Kd estimates for capsazepine in assays on cultured DRG neurones and vagus nerve as shown by the overlap in the 95% confidence limits.6. Capsazepine, at concentrations up to 1O microM, had no significant effects on the efflux of 86Rb+ from cultured DRG neurones evoked either by depolarization with high (50 mM) K' solutions or by acidification of the external medium to pH 5.0-5.6. Similarly capsazepine had no significant effect on he depolarization (50 mM KCl)-induced efflux of [14C]-guanidinium from vagus nerve preparations.7. Ruthenium Red was also tested for antagonism against capsaicin evoked ['4C]-guanidinium release from vague nerves and capsaicin induced 45Ca2" uptake in cultures of DRG neurones. In contrast to capsazepine the inhibition by Ruthenium Red (10-500nM in DRG and 0.5-10microM in vagus nerve experiments) was not consistent with a competitive antagonism, but rather suggested a more complex,non-competitive inhibition.

577 citations


Cited by
More filters
Journal ArticleDOI
22 Oct 1997-Nature
TL;DR: The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.
Abstract: Capsaicin, the main pungent ingredient in 'hot' chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo

8,186 citations

Journal ArticleDOI
09 Jun 2000-Science
TL;DR: Here, a conceptual framework for the contribution of plasticity in primary sensory and dorsal horn neurons to the pathogenesis of pain is developed, identifying distinct forms of Plasticity, which are term activation, modulation, and modification, that by increasing gain, elicit pain hypersensitivity.
Abstract: We describe those sensations that are unpleasant, intense, or distressing as painful. Pain is not homogeneous, however, and comprises three categories: physiological, inflammatory, and neuropathic pain. Multiple mechanisms contribute, each of which is subject to or an expression of neural plasticity-the capacity of neurons to change their function, chemical profile, or structure. Here, we develop a conceptual framework for the contribution of plasticity in primary sensory and dorsal horn neurons to the pathogenesis of pain, identifying distinct forms of plasticity, which we term activation, modulation, and modification, that by increasing gain, elicit pain hypersensitivity.

3,543 citations

Journal ArticleDOI
16 Oct 2009-Cell
TL;DR: Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.

3,394 citations

Journal ArticleDOI
14 Apr 2000-Science
TL;DR: Sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli and are impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation.
Abstract: The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the "pain" pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43 degrees C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. VR1-/- mice showed normal responses to noxious mechanical stimuli but exhibited no vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for selective modalities of pain sensation and for tissue injury-induced thermal hyperalgesia.

3,367 citations

Journal ArticleDOI
01 Sep 1998-Neuron
TL;DR: It is shown that protons decrease the temperature threshold for VR1 activation such that even moderately acidic conditions (pH < or = 5.9) activate VR1 at room temperature, and VR1 can be viewed as a molecular integrator of chemical and physical stimuli that elicit pain.

2,959 citations