scispace - formally typeset
Search or ask a question
Author

Stuart L. Pimm

Bio: Stuart L. Pimm is an academic researcher from Duke University. The author has contributed to research in topics: Biodiversity & Threatened species. The author has an hindex of 88, co-authored 296 publications receiving 33856 citations. Previous affiliations of Stuart L. Pimm include Pfeiffer University & University of Pretoria.


Papers
More filters
Journal ArticleDOI
26 Jan 1984-Nature
TL;DR: Early studies suggested that simple ecosystems were less stable than complex ones, but later studies came to the opposite conclusion as discussed by the authors. Confusion arose because of the many different meanings of "complexity" and "stability".
Abstract: Early studies suggested that simple ecosystems were less stable than complex ones, but later studies came to the opposite conclusion. Confusion arose because of the many different meanings of ‘complexity’ and ‘stability’. Most of the possible questions about the relationship between stability–complexity have not been asked. Those that have yield a variety of answers.

2,519 citations

Journal ArticleDOI
30 May 2014-Science
TL;DR: The biodiversity of eukaryote species and their extinction rates, distributions, and protection is reviewed, and what the future rates of species extinction will be, how well protected areas will slow extinction Rates, and how the remaining gaps in knowledge might be filled are reviewed.
Abstract: Background A principal function of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is to “perform regular and timely assessments of knowledge on biodiversity.” In December 2013, its second plenary session approved a program to begin a global assessment in 2015. The Convention on Biological Diversity (CBD) and five other biodiversity-related conventions have adopted IPBES as their science-policy interface, so these assessments will be important in evaluating progress toward the CBD’s Aichi Targets of the Strategic Plan for Biodiversity 2011–2020. As a contribution toward such assessment, we review the biodiversity of eukaryote species and their extinction rates, distributions, and protection. We document what we know, how it likely differs from what we do not, and how these differences affect biodiversity statistics. Interestingly, several targets explicitly mention “known species”—a strong, if implicit, statement of incomplete knowledge. We start by asking how many species are known and how many remain undescribed. We then consider by how much human actions inflate extinction rates. Much depends on where species are, because different biomes contain different numbers of species of different susceptibilities. Biomes also suffer different levels of damage and have unequal levels of protection. How extinction rates will change depends on how and where threats expand and whether greater protection counters them. Different visualizations of species biodiversity. ( A ) The distributions of 9927 bird species. ( B ) The 4964 species with smaller than the median geographical range size. ( C ) The 1308 species assessed as threatened with a high risk of extinction by BirdLife International for the Red List of Threatened Species of the International Union for Conservation of Nature. ( D ) The 1080 threatened species with less than the median range size. (D) provides a strong geographical focus on where local conservation actions can have the greatest global impact. Additional biodiversity maps are available at www.biodiversitymapping.org. Advances Recent studies have clarified where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. These data are increasingly accessible, bringing greater transparency to science and governance. Taxonomic catalogs of plants, terrestrial vertebrates, freshwater fish, and some marine taxa are sufficient to assess their status and the limitations of our knowledge. Most species are undescribed, however. The species we know best have large geographical ranges and are often common within them. Most known species have small ranges, however, and such species are typically newer discoveries. The numbers of known species with very small ranges are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. We expect unknown species to share these characteristics. Current rates of extinction are about 1000 times the background rate of extinction. These are higher than previously estimated and likely still underestimated. Future rates will depend on many factors and are poised to increase. Finally, although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Outlook Progress on assessing biodiversity will emerge from continued expansion of the many recently created online databases, combining them with new global data sources on changing land and ocean use and with increasingly crowdsourced data on species’ distributions. Examples of practical conservation that follow from using combined data in Colombia and Brazil can be found at www.savingspecies.org and www.youtube.com/watch?v=R3zjeJW2NVk.

2,360 citations

Journal Article
TL;DR: Estimates of future extinctions are hampered by the authors' limited knowledge of which areas are rich in endemics, and regions rich in species found only within them (endemics) dominate the global patterns of extinction.

1,980 citations

Journal ArticleDOI
21 Jul 1995-Science
TL;DR: For example, the authors showed that if all species currently deemed "threatened" become extinct in the next century, then future extinction rates will be 10 times higher than recent rates in well-known, but taxonomically diverse groups from widely different environments.
Abstract: Recent extinction rates are 100 to 1000 times their pre-human levels in well-known, but taxonomically diverse groups from widely different environments. If all species currently deemed "threatened" become extinct in the next century, then future extinction rates will be 10 times recent rates. Some threatened species will survive the century, but many species not now threatened will succumb. Regions rich in species found only within them (endemics) dominate the global patterns of extinction. Although new technology provides details of habitat losses, estimates of future extinctions are hampered by our limited knowledge of which areas are rich in endemics.

1,883 citations

Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: New work documents the uneven, highly clumped distribution of vulnerable species on the Earth, and pinpoints 25 so-called ‘biodiversity hotspots’, which should enable resources for conservation to be better focused.
Abstract: Habitat destruction, especially of the humid forests in the tropics, is the main cause of the species extinctions happening now New work documents the uneven, highly clumped distribution of vulnerable species on the Earth, and pinpoints 25 so-called ‘biodiversity hotspots’ Seventeen of them are tropical forest areas, and here reduction of natural habitat is disproportionately high Nonetheless, identification of this pattern should enable resources for conservation to be better focused

1,345 citations


Cited by
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
22 Jul 2005-Science
TL;DR: Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.
Abstract: Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet’s resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

10,117 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations