scispace - formally typeset
Search or ask a question
Author

Stuart Ramsden

Bio: Stuart Ramsden is an academic researcher from Australian National University. The author has contributed to research in topics: Gyroid & Minimal surface. The author has an hindex of 16, co-authored 23 publications receiving 2257 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The underlying methodology of assigning symbols is explained and the Reticular Chemistry Structure Resource (RCSR) is described, in which about 1600 periodic nets are collected and illustrated in a database that can be searched by symbol, name, keywords, and attributes.
Abstract: During the past decade, interest has grown tremendously in the design and synthesis of crystalline materials constructed from molecular clusters linked by extended groups of atoms. Most notable are metal-organic frameworks (MOFs), in which polyatomic inorganic metal-containing clusters are joined by polytopic linkers. (Although these materials are sometimes referred to as coordination polymers, we prefer to differentiate them, because MOFs are based on strong linkages that yield robust frameworks.) The realization that MOFs could be designed and synthesized in a rational way from molecular building blocks led to the emergence of a discipline that we call reticular chemistry. MOFs can be represented as a special kind of graph called a periodic net. Such descriptions date back to the earliest crystallographic studies but have become much more common recently because thousands of new structures and hundreds of underlying nets have been reported. In the simplest cases (e.g., the structure of diamond), the atoms in the crystal become the vertices of the net, and bonds are the links (edges) that connect them. In the case of MOFs, polyatomic groups act as the vertices and edges of the net. Because of the explosive growth in this area, a need has arisen for a universal system of nomenclature, classification, identification, and retrieval of these topological structures. We have developed a system of symbols for the identification of three periodic nets of interest, and this system is now in wide use. In this Account, we explain the underlying methodology of assigning symbols and describe the Reticular Chemistry Structure Resource (RCSR), in which about 1600 such nets are collected and illustrated in a database that can be searched by symbol, name, keywords, and attributes. The resource also contains searchable data for polyhedra and layers. The database entries come from systematic enumerations or from known chemical compounds or both. In the latter case, references to occurrences are provided. We describe some crystallographic, topological, and other attributes of nets and explain how they are reported in the database. We also describe how the database can be used as a tool for the design and structural analysis of new materials. Associated with each net is a natural tiling, which is a natural partition of space into space-filling tiles. The database allows export of data that can be used to analyze and illustrate such tilings.

1,885 citations

Journal ArticleDOI
TL;DR: A taxonomy of all networks arising from kaleidoscopic hyperbolic tilings with up to two distinct tile types mapped to three related TPMSs is included, namely Schwarz's primitive and diamond surfaces, and Schoen's gyroid (G).
Abstract: We present a method for geometric construction of periodic three-dimensional Euclidean nets by projecting two-dimensional hyperbolic tilings onto a family of triply periodic minimal surfaces (TPMSs). Our techniques extend the combinatorial tiling theory of Dress, Huson & Delgado-Friedrichs to enumerate simple reticulations of these TPMSs. We include a taxonomy of all networks arising from kaleidoscopic hyperbolic tilings with up to two distinct tile types (and their duals, with two distinct vertices), mapped to three related TPMSs, namely Schwarz's primitive (P) and diamond (D) surfaces, and Schoen's gyroid (G).

112 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D Euclidean space is constructed by projecting tilings of 2D hyperbolic space onto three-periodic minimal surfaces, giving surface reticulations.

78 citations

Journal ArticleDOI
TL;DR: In this article, tracer particles in a vibrated liquid reveal that the oscillon lattice generates two-dimensional turbulence that leads to its own melting, leading to a disordered array as the driving amplitude increases.
Abstract: Faraday waves---nonlinear standing waves that appear on the surface of a vibrated liquid---can self-organize into a regular lattice of oscillating solitons (oscillons), which then ``melts'' into a disordered array as the driving amplitude increases. In a new experiment, tracer particles in a vibrated liquid reveal that the oscillon lattice generates two-dimensional turbulence that leads to its own melting.

47 citations

Journal ArticleDOI
TL;DR: In this article, an algorithm for numerical computation of a medial surface and an associated medial graph for three-dimensional shapes bounded by oriented triangulated surface manifolds in 3D Euclidean space (domains).
Abstract: We describe an algorithm for numerical computation of a medial surface and an associated medial graph for three-dimensional shapes bounded by oriented triangulated surface manifolds in three-dimensional Euclidean space (domains). We apply the construction to bicontinuous domain shapes found in molecular self-assemblies, the cubic infinite periodic minimal surfaces of genus three: Gyroid (G), Diamond (D) and Primitive (P) surfaces. The medial surface is the locus of centers of maximal spheres, i.e. spheres wholly contained within the domains which graze the surface tangentially and are not contained in any other such sphere. The construction of a medial surface is a natural generalization of Voronoi diagrams to continuous surfaces. The medial surface provides an explicit construction of the volume element associated with a patch of the bounding surface, leading to a robust measure of the surface to volume ratio for complex forms. It also allows for sensible definition of a line graph (the medial graph), particularly useful for domains consisting of connected channels, and not reliant on symmetries of the domains. In addition, the medial surface construction produces a length associated with any point on the surface. Variations of this length give a useful measure of global homogeneity of topologically complex morphologies. Comparison of medial surfaces for the P, D and G surfaces reveal the Gyroid to be the most globally homogeneous of these cubic bicontinuous forms (of genus three). This result is compared with the ubiquity of the G surface morphology in soft mesophases, including lyotropic liquid crystals and block copolymers.

45 citations


Cited by
More filters
Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations

Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: The most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.
Abstract: The escalating level of atmospheric carbon dioxide is one of the most pressing environmental concerns of our age. Carbon capture and storage (CCS) from large point sources such as power plants is one option for reducing anthropogenic CO(2) emissions; however, currently the capture alone will increase the energy requirements of a plant by 25-40%. This Review highlights the challenges for capture technologies which have the greatest likelihood of reducing CO(2) emissions to the atmosphere, namely postcombustion (predominantly CO(2)/N(2) separation), precombustion (CO(2)/H(2)) capture, and natural gas sweetening (CO(2)/CH(4)). The key factor which underlies significant advancements lies in improved materials that perform the separations. In this regard, the most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.

3,388 citations