scispace - formally typeset
Search or ask a question
Author

Stylianos Chatzimanolis

Bio: Stylianos Chatzimanolis is an academic researcher from University of Tennessee at Chattanooga. The author has contributed to research in topics: Genus & Rove beetle. The author has an hindex of 16, co-authored 75 publications receiving 984 citations. Previous affiliations of Stylianos Chatzimanolis include University of Kansas & University of Tennessee.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: A molecular phylogeny of the mega‐diverse rove beetle tribe Staphylinini and its relatives (Insecta, Coleoptera, StAPHylinidae) is presented.
Abstract: Chatzimanolis, S., Cohen, I. M., Schomann, A. & Solodovnikov, A. (2010). Molecular phylogeny of the mega-diverse rove beetle tribe Staphylinini (Insecta, Coleoptera, Staphylinidae). —Zoologica Scripta, 39, 436–449. Phylogeny of the rove beetle tribe Staphylinini is explored by parsimony and Bayesian analyses of sequences of four genes (COI, wingless, Topoisomerase I, and 28S) for 43 ingroup (various genera of Staphylinini) and eight outgroup (two genera of Paederinae, six genera of other tribes of Staphylininae) taxa. Analyses were conducted for each gene independently and for the concatenated data set. Results of the most robust combined analyses were compared with the morphology-based phylogenies of Staphylinini (‘test phylogeny’), and with the conventional classification of this tribe. Molecular results were congruent with the ‘test phylogeny’ in the following: ancestors of Staphylinini were ‘Quediina-like’ lineages; formal subtribe Quediina mixes at least two relatively basal groups, ‘Quediina propria’ and ‘southern Quediina’; specialized subtribe Amblyopinina is an internal clade within ‘southern Quediina’; a relatively deeply nested ‘Staphylinini propria’ that unites current subtribes Staphylinina, Eucibdelina, Anisolinina, Xanthopygina and Philonthina is well supported as a monophyletic group. In strong contrast with morphology, molecular data place the tribes Othiini and Xantholinini nested within Staphylinini. Molecular results strongly conflict with morphology by uniting morphologically very different genera Holisus and Atanygnathus in one clade that has uncertain position within Staphylinini. Consistently with the most congruent areas of the morphology- and molecular-based phylogenies, taxonomic changes are implemented for the formal subtribes Quediina and Amblyopinina.

68 citations

Journal ArticleDOI

[...]

TL;DR: The comparative phylogeographic analysis supports a generally strong concordance of area relationships with geographic proximity and suggests that the Transverse Ranges as a group do not show phylogenetic cohesion, but rather they are split into three main regions.
Abstract: The Transverse Ranges in southern California have been identified as having a prominent phylogeographic role. Numerous studies have identified distinct north-south and/or east-west lineage breaks involving the Transverse Ranges. However, in evaluating their findings, most authors have regarded this complex system somewhat simplistically. In this study we more deeply investigate these breaks using two approaches: first we examine the phylogeographic history of Sepedophilus castaneus (Coleoptera: Staphylinidae) and then implement a comparative phylogeography approach applying Brooks parsimony analysis to the topologies of nine additional taxa. Phylogenetic analysis, nested clade analysis, and AMOVAs for S. castaneus agree that there is a major lineage break between the eastern and western Transverse Ranges, localized between the Sierra Pelona and the San Gabriel Mountains. The comparative phylogeographic analysis supports a generally strong concordance of area relationships with geographic proximity. It is notable, however, that the Transverse Ranges as a group do not show phylogenetic cohesion, but rather they are split into three main regions: an eastern region (San Gabriel, San Bernardino, and San Jacinto Mountains), a central region (central Transverse Ranges and Sierra Pelona) that is often grouped with the Tehachapi and Sierra Nevada populations, and a western region (northwestern Transverse Ranges and Santa Ynez Mountains) that is consistently grouped with coast range areas to the north. The lineage break between east and west Transverse Ranges is attributable to the presence of a marine embayment in what is now the Santa Clara River valley 5–2.5 million years ago.

61 citations

Journal ArticleDOI

[...]

23 Nov 2016-Zootaxa
TL;DR: The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa.
Abstract: The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemesio 2007; Donegan 2008, 2009; Nemesio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016.

54 citations

Journal ArticleDOI

[...]

TL;DR: Leehermania prorova Chatzimanolis, Grimaldi, and Engel as mentioned in this paper is the earliest staphylinid and the oldest definitive polyphagan beetle, which is based on a series of well-preserved specimens from the early Norian to late Carnian-aged (Late Triassic) Cow Branch Formation of southern Virginia.
Abstract: The Staphylinidae contain over 57,000 described species, thus comprising one of the largest families in all Insecta. Leehermania prorova Chatzimanolis, Grimaldi, and Engel, new genus and species, is described, which is the earliest staphylinid and the oldest definitive polyphagan beetle. The new species is based on a series of well-preserved specimens from the early Norian to late Carnian-aged (Late Triassic) Cow Branch Formation of southern Virginia. It is considered to be subfamily incertae sedis within Staphylinidae, but its possible affinity with the tachyporine group of staphylinids is noted. A summary of all Mesozoic Staphylinidae is provided and the evolutionary history of the lineage briefly discussed.

50 citations

Journal ArticleDOI

[...]

TL;DR: It is suggested that the continuous presence of mesic habitats may have buffered these lineages from strong selection for morphological change and originated in the Late Jurassic– Early Cretaceous and the Staphylinine group in the Early Jurassic.
Abstract: The Staphylinine group of rove beetle subfamilies is a significant animal radiation, and one subordinate monophyletic clade – the ‘Euaesthetine subgroup’ – includes around 3000 species in subfamilies Euaesthetinae and Steninae and has a fossil record dating to the Early Cretaceous. Detailed morphological study of a new well-preserved Cretaceous Burmese amber fossil revealed strong evidence consistent with its taxonomic placement in the euaesthetine genus Octavius . We thus describe Octavius electrospinosus sp. nov., the first Cretaceous record of the genus and of the tribe Euaesthetini. Previously, the oldest records of Octavius and Euaesthetini were from the Eocene (Baltic amber) and discovery of O. electrospinosus sp. nov. therefore nearly doubles the minimum lineage age of Octavius , increasing it by ∼50 million years. We also briefly review the known Euaesthetine subgroup fossil record and tabulate summary data for all previously described fossils. All are placed in extant genera, and have visible diagnostic generic-level characters including some putative synapomorphies as judged by recent phylogenetic work. Including O. electrospinosus sp. nov., there are now four known Cretaceous species, all of which belong to either Octavius , Nordenskioldia , or Stenus . To explain the long-term morphological stasis in this group of rove beetles, we suggest that the continuous presence of mesic habitats may have buffered these lineages from strong selection for morphological change. Considering the fossils along with phylogenetic hypotheses we suggest the Euaesthetine subgroup originated in the Late Jurassic– Early Cretaceous and the Staphylinine group in the Early Jurassic. We emphasize the derived status of Cretaceous fossils in assessing possible divergence times and the significance of the pre-Cretaceous taphonomic bias for restricting more robust estimates. Further detailed morphological study of available fossils in a phylogenetic framework is badly needed to clarify the phylogenetic positions of these taxa.

49 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,169 citations

Book ChapterDOI

[...]

31 Jan 1963

2,730 citations

Journal ArticleDOI

[...]

Bernhard Misof, Shanlin Liu, Karen Meusemann1, Ralph S. Peters, Alexander Donath, Christoph Mayer, Paul B. Frandsen2, Jessica L. Ware2, Tomas Flouri3, Rolf G. Beutel4, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco3, Torsten Wappler5, Jes Rust5, Andre J. Aberer3, Ulrike Aspöck6, Ulrike Aspöck7, Horst Aspöck6, Daniela Bartel6, Alexander Blanke8, Simon Berger3, Alexander Böhm6, Thomas R. Buckley9, Brett Calcott10, Junqing Chen, Frank Friedrich11, Makiko Fukui12, Mari Fujita8, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S. Jermiin1, Akito Y. Kawahara13, Lars Krogmann14, Martin Kubiak11, Robert Lanfear15, Robert Lanfear16, Robert Lanfear17, Harald Letsch6, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida8, Yuta Mashimo8, Pashalia Kapli18, Pashalia Kapli3, Duane D. McKenna19, Guanliang Meng, Yasutaka Nakagaki8, José Luis Navarrete-Heredia20, Michael Ott21, Yanxiang Ou, Günther Pass6, Lars Podsiadlowski5, Hans Pohl4, Björn M. von Reumont22, Kai Schütte11, Kaoru Sekiya8, Shota Shimizu8, Adam Slipinski1, Alexandros Stamatakis3, Alexandros Stamatakis23, Wenhui Song, Xu Su, Nikolaus U. Szucsich6, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler6, Shigekazu Tomizuka8, Michelle D. Trautwein24, Xiaoli Tong25, Toshiki Uchifune8, Manfred Walzl6, Brian M. Wiegmann26, Jeanne Wilbrandt, Benjamin Wipfler4, Thomas K. F. Wong1, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K. Yeates1, Kazunori Yoshizawa27, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M. Kjer2, Xin Zhou 
07 Nov 2014-Science
TL;DR: The phylogeny of all major insect lineages reveals how and when insects diversified and provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Abstract: Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

1,644 citations

Journal ArticleDOI

[...]

04 Apr 2011-ZooKeys
TL;DR: A catalogue of 4887 family-group names based on 4707 distinct genera in Coleoptera is given, which recognizes as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes.
Abstract: We synthesize data on all known extant and fossil Coleoptera family-group names for the first time. A catalogue of 4887 family-group names (124 fossil, 4763 extant) based on 4707 distinct genera in Coleoptera is given. A total of 4492 names are available, 183 of which are permanently invalid because they are based on a preoccupied or a suppressed type genus. Names are listed in a classification framework. We recognize as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes. For each name, the original spelling, author, year of publication, page number, correct stem and type genus are included. The original spelling and availability of each name were checked from primary literature. A list of necessary changes due to Priority and Homonymy problems, and actions taken, is given. Current usage of names was conserved, whenever possible, to promote stability of the classification. New synonymies (family-group names followed by genus-group names): Agronomina Gistel, 1848 syn. nov. of Amarina Zimmermann, 1832 (Carabidae), Hylepnigalioini Gistel, 1856 syn. nov. of Melandryini Leach, 1815 (Melandryidae), Polycystophoridae Gistel, 1856 syn. nov. of Malachiinae Fleming, 1821 (Melyridae), Sclerasteinae Gistel, 1856 syn. nov. of Ptilininae Shuckard, 1839 (Ptinidae), Phloeonomini Adam, 2001 syn. nov. of Omaliini MacLeay, 1825 (Staphylinidae), Sepedophilini Adam, 2001 syn. nov. of Tachyporini MacLeay, 1825 (Staphylinidae), Phibalini Gistel, 1856 syn. nov. of Cteniopodini Solier, 1835 (Tenebrionidae); Agronoma Gistel 1848 (type species Carabus familiaris Duftschmid, 1812, designated herein) syn. nov. of Amara Bonelli, 1810 (Carabidae), Hylepnigalio Gistel, 1856 (type species Chrysomela caraboides Linnaeus, 1760, by monotypy) syn. nov. of Melandrya Fabricius, 1801 (Melandryidae), Polycystophorus Gistel, 1856 (type species Cantharis aeneus Linnaeus, 1758, designated herein) syn. nov. of Malachius Fabricius, 1775 (Melyridae), Sclerastes Gistel, 1856 (type species Ptilinus costatus Gyllenhal, 1827, designated herein) syn. nov. of Ptilinus Geoffroy, 1762 (Ptinidae), Paniscus Gistel, 1848 (type species Scarabaeus fasciatus Linnaeus, 1758, designated herein) syn. nov. of Trichius Fabricius, 1775 (Scarabaeidae), Phibalus Gistel, 1856 (type species Chrysomela pubescens Linnaeus, 1758, by monotypy) syn. nov. of Omophlus Dejean, 1834 (Tenebrionidae). The following new replacement name is proposed: Gompeliina Bouchard, 2011 nom. nov. for Olotelina Baguena Corella, 1948 (Aderidae). Reversal of Precedence (Article 23.9) is used to conserve usage of the following names (family-group names followed by genus-group names): Perigonini Horn, 1881 nom. protectum over Trechicini Bates, 1873 nom. oblitum (Carabidae), Anisodactylina Lacordaire, 1854 nom. protectum over Eurytrichina LeConte, 1848 nom. oblitum (Carabidae), Smicronychini Seidlitz, 1891 nom. protectum over Desmorini LeConte, 1876 nom. oblitum (Curculionidae), Bagoinae Thomson, 1859 nom. protectum over Lyprinae Gistel 1848 nom. oblitum (Curculionidae), Aterpina Lacordaire, 1863 nom. protectum over Heliomenina Gistel, 1848 nom. oblitum (Curculionidae), Naupactini Gistel, 1848 nom. protectum over Iphiini Schonherr, 1823 nom. oblitum (Curculionidae), Cleonini Schonherr, 1826 nom. protectum over Geomorini Schonherr, 1823 nom. oblitum (Curculionidae), Magdalidini Pascoe, 1870 nom. protectum over Scardamyctini Gistel, 1848 nom. oblitum (Curculionidae), Agrypninae/-ini Candeze, 1857 nom. protecta over Adelocerinae/-ini Gistel, 1848 nom. oblita and Pangaurinae/-ini Gistel, 1856 nom. oblita (Elateridae), Prosternini Gistel, 1856 nom. protectum over Diacanthini Gistel, 1848 nom. oblitum (Elateridae), Calopodinae Costa, 1852 nom. protectum over Sparedrinae Gistel, 1848 nom. oblitum (Oedemeridae), Adesmiini Lacordaire, 1859 nom. protectum over Macropodini Agassiz, 1846 nom. oblitum (Tenebrionidae), Bolitophagini Kirby, 1837 nom. protectum over Eledonini Billberg, 1820 nom. oblitum (Tenebrionidae), Throscidae Laporte, 1840 nom. protectum over Stereolidae Rafinesque, 1815 nom. oblitum (Throscidae) and Lophocaterini Crowson, 1964 over Lycoptini Casey, 1890 nom. oblitum (Trogossitidae); Monotoma Herbst, 1799 nom. protectum over Monotoma Panzer, 1792 nom. oblitum (Monotomidae); Pediacus Shuckard, 1839 nom. protectum over Biophloeus Dejean, 1835 nom. oblitum (Cucujidae), Pachypus Dejean, 1821 nom. protectum over Pachypus Billberg, 1820 nom. oblitum (Scarabaeidae), Sparrmannia Laporte, 1840 nom. protectum over Leocaeta Dejean, 1833 nom. oblitum and Cephalotrichia Hope, 1837 nom. oblitum (Scarabaeidae).

805 citations

Journal ArticleDOI

[...]

01 Sep 1926-Nature
TL;DR: The Washington Biological Society has just published a reprint at the price of one dollar of the Code ofworms, with the permission of the Commission.
Abstract: DURING this year I have so often been asked how this Code could be obtained that I hasten, with your permission, to announce that the Washington Biological Society has just published a reprint at the price of one dollar. Prof. C. W. Stiles, secretary to the Commission, says: “I would suggest that, if your colleagues wish copies, it would expedite matters to order a number at once”. The address of the Society is at the Bureau of Entomology, Washington, D.C., U.S.A.

525 citations