scispace - formally typeset
Search or ask a question
Author

Su Bin Hyun

Bio: Su Bin Hyun is an academic researcher from Jeju National University. The author has contributed to research in topics: Carica & Nitric oxide. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, Carica papaya extract was found to significantly increase the levels of NO and prostaglandin E2 by upregulating inducible nitric oxide synthase and cyclo-oxygenase-2 activity, respectively.
Abstract: The emergence and rapid spread of the potentially fatal coronavirus disease 2019, caused due to infection by severe acute respiratory syndrome coronavirus-2, has led to worldwide interest in developing functional bioactive ingredients that act as immunomodulatory agents. In this study, we aimed to characterize Carica papaya extract and explore its potential as an immuno-modulator by performing in vitro cell screening. Papaya leaf water extract (PLW) was found to significantly increase the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) by upregulating inducible nitric oxide synthase and cyclo-oxygenase-2 activity, respectively. Additionally, PLW increased the production of tumor necrosis factor-α and interleukin 1β in RAW 264.7 cells. Furthermore, PLW activated the expression of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) but not that of p38 mitogen-activated protein kinase. These results indicate that PLW increased the production of NO, PGE2, and pro-inflammatory cytokines by activating the JNK and ERK pathways in macrophages, thus demonstrating immunomodulatory properties. Finally, high-performance liquid chromatography fingerprint analysis indicated the presence of rutin, narirutin, and ρ-coumaric acid in PLW (6.30, 119.76, and 47.25 ppm, respectively). Treating cells with these compounds at non-toxic concentrations had no effect on NO production. Taken together, these results suggest that PLW may have potential as an immunity-enhancing supplement. © The Korean Society for Applied Biological Chemistry 2021.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results show that Allium hookeri leaves and roots have high antioxidant and immunomodulatory effects and can be used as novel potential therapeutic candidates to treat related diseases and to improve public health.
Abstract: We investigated the antioxidant and immune-enhancing effects of the extracts from Allium hookeri leaves and roots (AHL and AHR) in in vitro and in vivo models. Their antioxidant effects were determined by total phenolic content (TPC), DPPH and ABTS radical scavenging activities, and superoxide dismutase and catalase activities. The immunomodulatory effects were evaluated by nitric oxide (NO) production and cytokine concentrations produced from RAW 264.7, and by serum IgA and IgG levels, cytokine levels, and NK cell activities in the immunosuppressed C57BL/6 mice. AHL and AHR extracts improved antioxidant activities and productions of NO and cytokines without cytotoxicity in the RAW 264.7 cells. AHL and AHR groups showed significantly higher serum IgA and IgG levels, Th1 cytokine concentrations, splenocyte proliferations, and NK cell activities than the NC group which was not treated with AHL or AHR extract. AHR extract showed higher values than AHL extract in the factors evaluated in this study. The results show that they have high antioxidant and immunomodulatory effects and can be used as novel potential therapeutic candidates to treat related diseases and to improve public health.

4 citations

Journal ArticleDOI
TL;DR: This review explores the scientific studies that support the role of papaya leaf in the form of juice, extract, or powder against thrombocytopenia through animal modeling and clinical trials.
Abstract: Thrombocytopenia is a clinical manifestation that refers to the low platelet count, i.e., <150 × 103/μL, of blood, resulting in imbalanced hemostasis, which leads to several fatal complications. The causative factors vary greatly, but, as a consequence, they interfere with platelet production and promote destruction, leading to death. Carica papaya leaf has unique therapeutic and medicinal characteristics against thrombocytopenia, and this is supported by scientific studies. Secondary metabolites and minerals in the leaf, such as carpaine and quercetin, promote platelet production, inhibit platelet destruction, and maintain platelet membrane through gene expression activity and the ceasing of viral proteases, respectively. This review explores the scientific studies that support the role of papaya leaf in the form of juice, extract, or powder against thrombocytopenia through animal modeling and clinical trials. Phytochemical profiles of C. papaya leaf revealed the presence of flavonoids, alkaloids, phenols, cardiac glycosides, tannins, terpenes, and saponins, which impart therapeutic potential to the leaf. The therapeutic benefits of the leaf include immunomodulatory, antiviral, antidiabetic, anticancer, antimalarial, antiangiogenic, antibacterial, and antioxidant activities. Several conducted scientific research studies have proved the efficacy of C. papaya leaf against thrombocytopenia, expanding the implication of natural sources to eradicate numerous ailments.

4 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated the immune-stimulatory effects of okra leaf ethanol extract (OLE) and water extract (OLW) on nitric oxide (NO) production in macrophages.
Abstract: During the current COVID-19 pandemic, the world is facing a new, highly contagious virus that suppresses innate immunity as one of its early virulence mechanisms. Therefore, finding new methods to enhance innate immunity is a promising strategy to attenuate the effects of this major global health problem. With the aim of characterizing bioactive ingredients as immune-enhancing agents, this study focuses on Abelmoschus esculentus (okra), which has several previously demonstrated bioactivities. Firstly, we investigated the immune-stimulatory effects of okra leaf ethanol extract (OLE) and okra leaf water extract (OLW) on nitric oxide (NO) production in macrophages. OLE significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells, indicating that it potentially inhibited NO production in a concentration-dependent manner. In contrast, OLW significantly enhanced the production of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and NO in a dose-dependent manner. OLW also increased the expression levels of NO synthase (iNOS) and cyclooxygenase (COX)-2, potentially explaining the OLW-induced increase in NO and PGE2 production. In addition, OLW stimulated the phosphorylation of mitogen-activated protein kinases (MAPKs; ERK, p38, and JNK) as well as the activation and subsequent nuclear translocation of nuclear factor κB (NF-κB). This indicated that OLW activates macrophages to secrete PGE2, TNF-α, IL-1β, and NO, inducing iNOS and COX-2 expression via activation of the NF-κB and MAPK signaling pathways. In conclusion, our results demonstrate that OLW can effectively promote the activation of macrophages, suggesting that OLW may possess potent immunomodulatory effects and should be explored as a potential health-promoting materials to boost the immune system.

2 citations