scispace - formally typeset
Search or ask a question
Author

Su Chi Lim

Bio: Su Chi Lim is an academic researcher from Khoo Teck Puat Hospital. The author has contributed to research in topics: Type 2 diabetes & Diabetes mellitus. The author has an hindex of 38, co-authored 190 publications receiving 7054 citations. Previous affiliations of Su Chi Lim include University of Bergen & Alexandra Hospital.


Papers
More filters
Journal ArticleDOI
01 Sep 1999-Diabetes
TL;DR: The results suggest that abnormalities in vascular reactivity and biochemical markers of endothelial cell activation are present early in individuals at risk of developing type 2 diabetes, even at a stage when normal glucose tolerance exists, and that factors in addition to insulin resistance may be operative.
Abstract: Abnormalities in vascular reactivity in the micro- and macrocirculation are well established in type 2 diabetes. However, little is known about changes in vascular reactivity in those at risk for developing type 2 diabetes. To address this situation, the vascular reactivity in both the micro- and macrocirculation was studied in four age and sex comparable groups: 30 healthy normoglycemic subjects with no history of type 2 diabetes in a first-degree relative (controls), 39 healthy normoglycemic subjects with a history of type 2 diabetes in one or both parents (relatives), 32 subjects with impaired glucose tolerance (IGT), and 42 patients with type 2 diabetes without vascular complications (diabetes). Laser Doppler perfusion imaging was used to measure vasodilation in the forearm skin in response to iontophoresis of 1% acetylcholine chloride (Ach) (endothelium-dependent) and 1% sodium nitroprusside (SNP) (endothelium-independent), whereas high-resolution ultrasound images were used to measure brachial artery diameter changes during reactive hyperemia. Plasma concentrations of endothelin-1 (ET-1), von Willebrand factor (vWF), soluble intercellular adhesion molecule (sICAM), and soluble vascular cell adhesion molecule (sVCAM) were also measured as indicators of endothelial cell activation. The vasodilatory responses to Ach, expressed as percent increase of blood flow over baseline, were reduced in relatives (98 +/- 48, mean +/- SD), IGT (94 +/- 52), and diabetes (74 +/- 45) compared with controls (126 +/- 67) (P < 0.001 controls versus relatives, IGT, and diabetes). The responses to SNP were similarly reduced: controls (123 +/- 46), relatives (85 +/- 46), IGT (83 +/- 48), and diabetes (65 +/- 31) (P < 0.001 controls versus relatives, IGT, and diabetes) as were the responses in the brachial artery diameter during reactive hyperemia: controls (13.7 +/- 6.1), relatives (10.5 +/- 6.7), IGT (9.8 +/- 4.5), and diabetes (8.4 +/- 5.0) (P < 0.01 controls versus relatives, IGT, and diabetes). Women had greater responses than men in both the micro- and macrovascular circulatory tests, but a similar progressive reduction was observed in both sexes with increasing degrees of glucose intolerance. A significant inverse correlation was found between microvascular reactivity and systolic blood pressure, fasting plasma glucose, HDL cholesterol, fasting plasma insulin, and homeostasis model assessment (HOMA) values, an index of insulin resistance. BMI and diastolic blood pressure had a significant inverse correlation only with endothelium-dependent vasodilation. In the macrocirculation, systolic blood pressure, HbA1c, HDL cholesterol, and HOMA had significant correlation with brachial artery diameter changes. Compared with control subjects, ET-1 was significantly higher in all groups, vWF was higher only in the diabetic group, sICAM levels were higher in the IGT and diabetic groups, while sVCAM concentrations were higher in the relatives and those with diabetes (P < 0.05). On stepwise multivariate analysis, age, sex, fasting plasma glucose, and BMI were the most important contributing factors to the variation of vascular reactivity. Addition of all clinical and biochemical measures explained only 32-37% of the variation in vascular reactivity. These results suggest that abnormalities in vascular reactivity and biochemical markers of endothelial cell activation are present early in individuals at risk of developing type 2 diabetes, even at a stage when normal glucose tolerance exists, and that factors in addition to insulin resistance may be operative.

660 citations

Journal ArticleDOI
Cristian Pattaro, Alexander Teumer1, Mathias Gorski2, Audrey Y. Chu3  +732 moreInstitutions (157)
TL;DR: A meta-analysis of genome-wide association studies for estimated glomerular filtration rate suggests that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
Abstract: Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

409 citations

Journal ArticleDOI
TL;DR: These findings demonstrate that perturbations in amino acid homeostasis, but not inflammatory markers or NEFAs, are associated with IR in individuals of relatively low body mass.
Abstract: Aims/hypothesis Insulin resistance (IR) is associated with obesity, but can also develop in individuals with normal body weight. We employed comprehensive profiling methods to identify metabolic events associated with IR, while controlling for obesity.

407 citations

Journal ArticleDOI
01 Aug 2011-PLOS ONE
TL;DR: It is demonstrated that peripheral blood microRNAs can be developed as unique biomarkers that are reflective and predictive of metabolic health and disorder.
Abstract: Background Dysregulation of microRNA (miRNA) expression in various tissues and body fluids has been demonstrated to be associated with several diseases, including Type 2 Diabetes mellitus (T2D). Here, we compare miRNA expression profiles in different tissues (pancreas, liver, adipose and skeletal muscle) as well as in blood samples from T2D rat model and highlight the potential of circulating miRNAs as biomarkers of T2D. In parallel, we have examined the expression profiles of miRNAs in blood samples from Impaired Fasting Glucose (IFG) and T2D male patients.

402 citations

Journal ArticleDOI
TL;DR: Plasma irisin levels appear to be associated with important metabolic factors in non-diabetic subjects but not in individuals with type 2 diabetes.
Abstract: Aims Irisin is a novel myokine secreted in response to PPAR-γ co-activator-1α (PGC-1α) activation. Earlier studies suggested that PGC-1α expression and activity were lower in myocytes in type 2 diabetes mellitus (T2DM). Therefore, we hypothesize that circulating irisin levels are lower in T2DM patients. Methods In this observational study, we recruited 96 T2DM subjects and 60 non-diabetic control subjects. Among T2DM subjects, 38% were on insulin treatment, 78% were taking statins and 72% were taking renin-angiotensin system antagonists. Circulating irisin was quantified by ELISA and its association with markers of metabolic phenotype was analyzed by Pearson bivariate correlation and multiple linear regression. Results Circulating irisin was significantly lower in individuals with T2DM compared with non-diabetic controls (T2DM 204 ± 72 ng/ml vs. non-diabetic control 257 ± 24 ng/ml, p Conclusions Circulating irisin is lower in T2DM compared with non-diabetic controls. Plasma irisin levels appear to be associated with important metabolic factors in non-diabetic subjects but not in individuals with type 2 diabetes.

389 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Book ChapterDOI
01 Jan 2010

5,842 citations

Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
TL;DR: The Statistical Update represents the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA's My Life Check - Life’s Simple 7, which include core health behaviors and health factors that contribute to cardiovascular health.
Abstract: Each chapter listed in the Table of Contents (see next page) is a hyperlink to that chapter. The reader clicks the chapter name to access that chapter. Each chapter listed here is a hyperlink. Click on the chapter name to be taken to that chapter. Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together in a single document the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA’s My Life Check - Life’s Simple 7 (Figure1), which include core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure [BP], and glucose control) that contribute to cardiovascular health. The Statistical Update represents …

5,102 citations

Journal ArticleDOI
TL;DR: Longer diabetes duration and poorer glycemic and blood pressure control are strongly associated with DR, and these data highlight the substantial worldwide public health burden of DR and the importance of modifiable risk factors in its occurrence.
Abstract: OBJECTIVE To examine the global prevalence and major risk factors for diabetic retinopathy (DR) and vision-threatening diabetic retinopathy (VTDR) among people with diabetes. RESEARCH DESIGN AND METHODS A pooled analysis using individual participant data from population-based studies around the world was performed. A systematic literature review was conducted to identify all population-based studies in general populations or individuals with diabetes who had ascertained DR from retinal photographs. Studies provided data for DR end points, including any DR, proliferative DR, diabetic macular edema, and VTDR, and also major systemic risk factors. Pooled prevalence estimates were directly age-standardized to the 2010 World Diabetes Population aged 20–79 years. RESULTS A total of 35 studies (1980–2008) provided data from 22,896 individuals with diabetes. The overall prevalence was 34.6% (95% CI 34.5–34.8) for any DR, 6.96% (6.87–7.04) for proliferative DR, 6.81% (6.74–6.89) for diabetic macular edema, and 10.2% (10.1–10.3) for VTDR. All DR prevalence end points increased with diabetes duration, hemoglobin A 1c , and blood pressure levels and were higher in people with type 1 compared with type 2 diabetes. CONCLUSIONS There are approximately 93 million people with DR, 17 million with proliferative DR, 21 million with diabetic macular edema, and 28 million with VTDR worldwide. Longer diabetes duration and poorer glycemic and blood pressure control are strongly associated with DR. These data highlight the substantial worldwide public health burden of DR and the importance of modifiable risk factors in its occurrence. This study is limited by data pooled from studies at different time points, with different methodologies and population characteristics.

3,282 citations