scispace - formally typeset
Search or ask a question
Author

Su Young Kim

Bio: Su Young Kim is an academic researcher from Catholic University of Korea. The author has contributed to research in topics: Cancer & Germline mutation. The author has an hindex of 51, co-authored 198 publications receiving 8829 citations. Previous affiliations of Su Young Kim include Fundación Instituto Leloir & New Generation University College.


Papers
More filters
Journal ArticleDOI
17 Feb 2005-Oncogene
TL;DR: In this paper, the authors performed mutational analysis of the PIK3CA gene by polymerase chain reaction-single-strand conformation polymorphism assay in 668 cases of common human cancers, including hepatocellular carcinomas, acute leukemias, gastric carcinoma, breast carcinomas and non-small-cell lung cancers.
Abstract: A recent report revealed that phosphoinositide-3-kinase, catalytic, alpha (PIK3CA) gene is somatically mutated in several types of human cancer, suggesting the mutated PIK3CA gene as an oncogene in human cancers. However, because the previous report focused the mutational search primarily on colon cancers, the data on PIK3CA mutations in other types of human cancers have been largely unknown. Here, we performed mutational analysis of the PIK3CA gene by polymerase chain reaction-single-strand conformation polymorphism assay in 668 cases of common human cancers, including hepatocellular carcinomas, acute leukemias, gastric carcinomas, breast carcinomas, and non-small-cell lung cancers. We detected PIK3CA somatic mutations in 26 of 73 hepatocellular carcinomas (35.6%), 25 of 93 breast carcinomas (26.9%), 12 of 185 gastric carcinomas (6.5%), one of 88 acute leukemias (1.1%), and three of 229 non-small-cell lung cancers (1.3%). Some of the PIK3CA mutations were detected in the early lesions of breast cancer carcinoma, hepatocellular carcinoma, and gastric carcinomas, suggesting that PIK3CA mutation may occur independent of stage of the tumors. The high incidence and wide distribution of PIK3CA gene mutation in the common human cancers suggest that alterations of lipid kinase pathway by PIK3CA mutations contribute to the development of human cancers.

533 citations

Journal ArticleDOI
01 Apr 2005-Apmis
TL;DR: Analysis of the expression of HDAC2 in 71 gastric adenocarcinomas by immunohistochemistry suggests thatHDAC2 may play an important role in the aggressiveness of gastric cancer.
Abstract: Accumulated evidence has established that aberrant regulation of histone deacetylases (HDACs) is one of the major causes of the development of human malignancies. Among different iso-enzymes of HDAC and sirtuins grouped as the HDAC super family, little is known as to how histone deacetylase 2 (HDAC2) causes carcinogenesis in solid tumors. Here, in order to investigate the possible role of HDAC2 in gastric carcinogenesis, we analyzed the expression of HDAC2 in 71 gastric adenocarcinomas by immunohistochemistry. Moderate to strong expression of HDAC2 was found in 44 (62%) out of a total of 71 tumors. The majority of positive tumors, which were detected in the nucleus but not in normal gastric epithelium, did not express HDAC2 or showed only weak positive staining. Interestingly, we also noted that HDAC2 expression appeared to be associated with tumor aggressiveness as HDAC2 expression was observed to be statistically significant in advanced gastric cancer (P=0.0023, Chi-square test) and in positive lymph node metastasis (P=0.0713, Chi-square test). Taken together, these results suggest that HDAC2 may play an important role in the aggressiveness of gastric cancer.

347 citations

Journal Article
TL;DR: The results indicate that mutations of the tyrosine kinase domain of the MET gene may be involved in the acceleration of the carcinogenesis in childhood HCC.
Abstract: The MET protooncogene encodes a transmembrane tyrosine kinase identified as the receptor of a polypeptide known as hepatocyte growth factor/scatter factor. We performed PCR-based single-strand conformational polymorphism and sequencing analysis of the tyrosine kinase domain of the MET gene (exon 15-19) in 75 primary liver cancers. Three missense mutations were detected exclusively in 10 childhood hepatocellular carcinomas (HCCs), while no mutations were detected in 16 adult HCCs, 21 cholangiocarcinomas, or 28 hepatoblastomas. The extremely short incubation period from hepatitis B virus infection to the genesis of childhood HCC as compared with the adult HCC suggests that there may be an additional mechanism that accelerates the carcinogenesis of childhood HCC. Our results indicate that mutations of the tyrosine kinase domain of the MET gene may be involved in the acceleration of the carcinogenesis in childhood HCC.

256 citations

Journal ArticleDOI
TL;DR: It is indicated that in addition to non–small-cell lung cancer, SCCHN harbors the EGFR gene mutations, and the rationale for the clinical applicability of gefinitib toSCCHN patients is suggested.
Abstract: Purpose: Recently, the kinase domain mutations of epidermal growth factor receptor ( EGFR ) gene have been identified in non–small-cell lung cancer, and these mutations have been related to the clinical response to the tyrosine kinase inhibitor gefitinib. Gefitinib treatment has also shown clinical benefits in squamous cell carcinoma of the head and neck (SCCHN). The aim of this study was to explore the possibility that SCCHN harbored the EGFR mutations. Experimental Design: In this study, we analyzed EGFR gene in 41 SCCHN for the detection of the somatic mutations by PCR-single-strand conformational polymorphism analysis. Results: Overall, we detected three EGFR mutations (7.3%), and all of the mutations were the same in-frame deletion mutation in exon 19 (E746_A750del). Conclusion: These data indicated that in addition to non–small-cell lung cancer, SCCHN harbors the EGFR gene mutations, and suggested the rationale for the clinical applicability of gefinitib to SCCHN patients.

251 citations

Journal Article
TL;DR: The analysis of death domains of Fas and tumor necrosis factor-related apoptosis-inducing ligand-receptor 1 and -2 genes suggests that TRAIL-R1 and R2 genes are relevant to the frequent loss of chromosome 8p21-22 in breast cancer and that the inactivating mutations of TRAil- R1 and -R2 genes play a role in the metastasis of breast cancer.
Abstract: Several lines of evidence suggest that apoptosis dysregulation plays an important role in cancer metastasis. In this study, to explore the possibility that the mutations of death receptors are involved in the metastasis mechanism, we analyzed the death domains of Fas and tumor necrosis factor-related apoptosis-inducing ligand-receptor 1 and -2 ( TRAIL-R1 and - R2 ) genes for the detection of somatic mutations in 57 breast cancers with ( n = 34) or without ( n = 23) metastasis to the regional lymph nodes. We found seven mutations (three TRAIL-R1 and four TRAIL-R2 mutations), and these mutations were detected only in the breast cancers with metastasis. Furthermore, we also analyzed the allelic losses of chromosome 8p21–22, where TRAIL-R1 and R2 reside in the same series of breast cancers, and found that the allelic losses were significantly higher in metastatic breast cancers. We expressed the tumor-derived TRAIL-R1 and TRAIL-R2 mutants in 293 cells and found that apoptosis was suppressed. These data suggest that TRAIL-R1 and R2 genes are relevant to the frequent loss of chromosome 8p21–22 in breast cancer and that the inactivating mutations of TRAIL-R1 and - R2 genes play a role in the metastasis of breast cancer.

247 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies are discussed.
Abstract: Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Global changes in the epigenetic landscape are a hallmark of cancer. The initiation and progression of cancer, traditionally seen as a genetic disease, is now realized to involve epigenetic abnormalities along with genetic alterations. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer including DNA methylation, histone modifications, nucleosome positioning and non-coding RNAs, specifically microRNA expression. The reversible nature of epigenetic aberrations has led to the emergence of the promising field of epigenetic therapy, which is already making progress with the recent FDA approval of three epigenetic drugs for cancer treatment. In this review, we discuss the current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies.

4,033 citations

Journal ArticleDOI
TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Abstract: Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.

3,340 citations

Journal ArticleDOI
Paul Polakis1
TL;DR: In this review, the wnt pathway will be covered from the perspective of cancer, with emphasis placed on molecular defects known to promote neoplastic transformation in humans and in animal models.
Abstract: The regulation of cell growth and survival can be subverted by a variety of genetic defects that alter transcriptional programs normally responsible for controlling cell number. High throughput analysis of these gene expression patterns should ultimately lead to the identification of minimal expression profiles that will serve as common denominators in assigning a cancer to a given category. In the course of defining the common denominators, though, we should not be too surprised to find that cancers within a single category may nevertheless exhibit seemingly disparate genetic defects. The wnt pathway has already provided an outstanding example of this. We now know of three regulatory genes in this pathway that are mutated in primary human cancers and several others that promote experimental cancers in rodents (Fig. 1). In all of these cases the common denominator is the activation of gene transcription by -catenin. The resulting gene expression profile should provide us with a signature common to those cancers carrying defects in the wnt pathway. In this review, the wnt pathway will be covered from the perspective of cancer, with emphasis placed on molecular defects known to promote neoplastic transformation in humans and in animal models.

3,277 citations

Journal ArticleDOI
17 May 2001-Nature
TL;DR: Deregulated cell proliferation provides a minimal 'platform' necessary to support further neoplastic progression and should be targeted withroit targeting to have potent and specific therapeutic consequences.
Abstract: Beneath the complexity and idiopathy of every cancer lies a limited number of 'mission critical' events that have propelled the tumour cell and its progeny into uncontrolled expansion and invasion One of these is deregulated cell proliferation, which, together with the obligate compensatory suppression of apoptosis needed to support it, provides a minimal 'platform' necessary to support further neoplastic progression Adroit targeting of these critical events should have potent and specific therapeutic consequences

3,151 citations

Journal ArticleDOI
TL;DR: In light of the recent advances in understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, the exciting therapeutic opportunities for targeting this pathway to treat these diseases are discussed.
Abstract: Phosphatidylinositol 3-kinases (PI3Ks) evolved from a single enzyme that regulates vesicle trafficking in unicellular eukaryotes into a family of enzymes that regulate cellular metabolism and growth in multicellular organisms. In this review, we examine how the PI3K pathway has evolved to control these fundamental processes, and how this pathway is in turn regulated by intricate feedback and crosstalk mechanisms. In light of the recent advances in our understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, we discuss the exciting therapeutic opportunities for targeting this pathway to treat these diseases.

2,935 citations