scispace - formally typeset
Search or ask a question
Author

Subhabrata Paul

Other affiliations: University of Calcutta
Bio: Subhabrata Paul is an academic researcher from Presidency University, Kolkata. The author has contributed to research in topics: Apoptosis & HeLa. The author has an hindex of 7, co-authored 21 publications receiving 156 citations. Previous affiliations of Subhabrata Paul include University of Calcutta.

Papers
More filters
Journal ArticleDOI
TL;DR: The toxic effects of the gold nanoparticles were found to vary in diverse test systems, accentuating the importance of size and surface functionalization at different trophic levels.
Abstract: In the present study, the toxicity of gold nanoparticles (Au NPs) was evaluated on various trophic organisms. Bacteria, algae, cell line, and mice were used as models representing different trophic levels. Two different sizes (CIT30 and CIT40) and surface-capped (CIT30-polyvinyl pyrrolidone (PVP)-capped) Au NPs were selected. CIT30 Au NP aggregated more rapidly than CIT40 Au NP, while an additional capping of PVP (CIT30-PVP capped Au NP) was found to enhance its stability in sterile lake water medium. Interestingly, all the forms of NPs evaluated were stable in the cell culture medium during the exposure period. Size- and dose-dependent cytotoxicities were observed in both bacteria and algae, with a strong dependence on reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) release. CIT30-PVP capped Au NP showed a significant decrease in toxicity compared to CIT30 Au NP in bacteria and algae. In the SiHa cell line, dose- and exposure-dependent decline in cell viability were noted for all three types of Au NPs. In mice, the induction of DNA damage was size and dose dependent, and surface functionalization with PVP reduced the toxic effects of CIT30 Au NP. The exposure to CIT30, CIT40, and CIT30-PVP capped Au NPs caused an alteration of the oxidative stress-related endpoints in mice hepatocytes. The toxic effects of the gold nanoparticles were found to vary in diverse test systems, accentuating the importance of size and surface functionalization at different trophic levels.

63 citations

Journal ArticleDOI
TL;DR: The title family of mixed-ligand oxidovanadium(V) hydrazone complexes are [VVO(HL1)(hq)] (1) and [V VO(HL2)(hqs)] (2), where (HL1)2− and (HL2)2+ are the dinegative form of 2-hydroxybenzoylhydrazone o...
Abstract: The title family of mixed-ligand oxidovanadium(V) hydrazone complexes are [VVO(HL1)(hq)] (1) and [VVO(HL2)(hq)] (2), where (HL1)2− and (HL2)2− are the dinegative form of 2-hydroxybenzoylhydrazone o...

31 citations

Journal ArticleDOI
TL;DR: BA effectively induced DNA damage and apoptosis in SiHa cells and the mechanism of apoptosis was caspase independent and through mitochondrial pathways.
Abstract: Betulinic acid (BA) is a naturally occurring terpenoid found principally in the bark of birch trees as well as in numerous other plants. BA is reported to inhibit cancer progression and induce apoptosis in multiple tumor types. In the present study we have investigated the cytotoxicity and potential genotoxicity of BA in SiHa cells. The cell viability was measured by using MTT assay and the morphological changes, DNA damage, changes in cell cycle and mitochondrial membrane potential (MMP) were used for the assessment of apoptosis. BA was shown to destroy SiHa cells preferentially in a concentration dependent manner with a 50% inhibition of the cells at 39.83 μg/ml. The growth inhibition of the cells by BA was coupled with DNA strand breaks, morphological changes, disruption of MMP, reactive oxygen species (ROS) generation and the cell arrest at G0/G1 stage of cell cycle. BA induced apoptosis in SiHa cells was confirmed by positive Annexin V FITC-PI staining. Our results indicate that BA effectively induced DNA damage and apoptosis in SiHa cells. The mechanism of apoptosis was caspase independent and through mitochondrial pathways.

24 citations

Journal ArticleDOI
19 Dec 2013-DARU
TL;DR: These two algae can be potent candidates for isolating new lead anticancer molecules and need further characterization at both molecular and structural levels.
Abstract: Natural compounds can be alternative sources for finding new lead anti-cancer molecules. Marine algae have been a traditional source for bioactive compounds. Enteromorpha intestinalis and Rhizoclonium riparium are two well distributed saline/brackish water algae from Sundarbans. There’s no previous report of these two for their anti-proliferative activities. Cytotoxicity of the algal methanolic extracts (AMEs) on HeLa cells were assayed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) reduction assay. Morphological examinations were done by Haematoxylin, Hoechst 33258 and Acridine orange staining. DNA fragmentation was checked. Gene expressions of Cysteine aspartate protease (Caspase) 3, Tumor protein (TP) 53, Bcl-2 associated protein X (Bax) were studied by Reverse transcription- polymerase chain reaction (RT-PCR) keeping Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as internal control. Protein expressions were studied for Caspase 3, phospho-p53, Bax, Microtubule associated proteins-1/ light chain B (MAP1/LC3B) by western blot. The AMEs were found to be cytotoxic with Inhibitory concentration 50 (IC50) values 309.048 ± 3.083 μg/ml and 506.081 ± 3.714 μg/ml for E. intestinalis and R. riparium extracts respectively. Treated cells became round with blebbings with condensed nuclei. Acidic lysosomal vacuoles formation occurred in treated cells. Expression of apoptotic genes in both mRNA and protein level was lowered. Expression of LC3B-II suggested occurrence of autophagy in treated cells. These two algae can be potent candidates for isolating new lead anticancer molecules. So they need further characterization at both molecular and structural levels.

22 citations


Cited by
More filters
01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: Lead phytochemicals with their action mechanisms on nuclear and cellular factors involved in carcinogenesis and druggability parameters and clinical development of anticancer phytomolecules have been discussed.
Abstract: Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed.

249 citations

Journal ArticleDOI
TL;DR: This review aims to provide a better understanding about the in vitro and in vivo toxicity of gold nanoparticles by reviewing and describing the up to date literatures related to this problem and it mainly focused on properties such as the particle size and shape, the surface charge and modification.

197 citations

Journal ArticleDOI
TL;DR: This is the first report showing phytochemicals-capped GNPs as a promising nanopriming agent for activating the germination of naturally aged seeds of crop plant.

171 citations