scispace - formally typeset
Search or ask a question
Author

Subhankar Ray

Bio: Subhankar Ray is an academic researcher from University of Calcutta. The author has contributed to research in topics: Methylglyoxal & Enzyme. The author has an hindex of 20, co-authored 43 publications receiving 1205 citations. Previous affiliations of Subhankar Ray include Indian Association for the Cultivation of Science.

Papers
More filters
Journal ArticleDOI
TL;DR: The p-hydroxymercuribenzoate-inactivated enzyme could be almost completely re-activated by dithiothreitol and other thiol-group-containing compounds, indicating the possible involvement of thiol group(s) at or near the active site of the enzyme.
Abstract: A single novel enzyme, glyoxalase III, which catalyses the conversion of methylglyoxal into D-lactate without involvement of GSH, has been detected in and purified from Escherichia coli Of several carbonyl compounds tested, only the alpha-ketoaldehydes methylglyoxal and phenylglyoxal were found to be substrates for this enzyme Glyoxalase III is active over a wide range of pH with no sharp pH optimum In its native form it has an M(r) of 82000 +/- 2000, and it is composed of two subunits of equal M(r) Glutathione analogues, which are inhibitors of glyoxalase I, do not inhibit glyoxalase III Glyoxalase III is found to be sensitive to thiol-blocking reagents The p-hydroxymercuribenzoate-inactivated enzyme could be almost completely re-activated by dithiothreitol and other thiol-group-containing compounds, indicating the possible involvement of thiol group(s) at or near the active site of the enzyme

106 citations

Journal ArticleDOI
TL;DR: It is concluded that methylglyoxal inhibits glycolysis and the electron flow through mitochondrial complex I of leukaemic leucocytes, strikingly similar to previous studies on mitochondrial respiration, glycoleysis and ATP levels in Ehrlich ascites carcinoma cells.
Abstract: The effect of methylglyoxal on the oxygen consumption of mitochondria of both normal and leukaemic leucocytes was tested by using different respiratory substrates and complex specific artificial electron donors and inhibitors. The results indicate that methylglyoxal strongly inhibits mitochondrial respiration in leukaemic leucocytes, whereas, at a much higher concentration, methylglyoxal fails to inhibit mitochondrial respiration in normal leucocytes. Methylglyoxal strongly inhibits ADP-stimulated alpha-oxoglutarate and malate plus NAD+-dependent respiration, whereas, at a higher concentration, methylglyoxal fails to inhibit succinate and alpha-glycerophosphate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinone and cannot inhibit oxygen consumption when the N,N,N', N'-tetramethyl-p-phenylenediamine by-pass is used. NADH oxidation by sub-mitochondrial particles of leukaemic leucocytes is also inhibited by methylglyoxal. Lactaldehyde, a catabolite of methylglyoxal, can exert a protective effect on the inhibition of leukaemic leucocyte mitochondrial respiration by methylglyoxal. Methylglyoxal also inhibits l-lactic acid formation by intact leukaemic leucocytes and critically reduces the ATP level of these cells, whereas methylglyoxal has no effect on normal leucocytes. We conclude that methylglyoxal inhibits glycolysis and the electron flow through mitochondrial complex I of leukaemic leucocytes. This is strikingly similar to our previous studies on mitochondrial respiration, glycolysis and ATP levels in Ehrlich ascites carcinoma cells [Ray, Dutta, Halder and Ray (1994) Biochem. J. 303, 69-72; Halder, Ray and Ray (1993) Int. J. Cancer 54, 443-449], which strongly suggests that the inhibition of electron flow through complex I of the mitochondrial respiratory chain and inhibition of glycolysis by methylglyoxal may be common characteristics of all malignant cells.

103 citations

Journal ArticleDOI
TL;DR: An enzyme fraction which specifically catalyzes the formation of methylglyoxal from dihydroxyacetone phosphate has been isolated and partially purified from goat liver and appears to be substantially free from glyoxalase I, reduced glutathione, and triosephosphate isomerase.

90 citations

Journal ArticleDOI
TL;DR: The results indicate that methylglyoxal strongly inhibits ADP-stimulated alpha-oxo-glutarate and malate plus pyruvate-dependent respiration, whereas, at a much higher concentration, methyl glyoxal fails to inhibit succinate- dependent respiration.
Abstract: The effect of methylglyoxal on the oxygen consumption of Ehrlich-ascites-carcinoma (EAC)-cell mitochondria was tested by using different respiratory substrates, electron donors at different segments of the mitochondrial respiratory chain and site-specific inhibitors to identify the specific respiratory complex which might be involved in the inhibitory effect of methylglyoxal on the oxygen consumption by these cells. The results indicate that methylglyoxal strongly inhibits ADP-stimulated alpha-oxo-glutarate and malate plus pyruvate-dependent respiration, whereas, at a much higher concentration, methylglyoxal fails to inhibit succinate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinol, an artificial electron donor. Moreover, methylglyoxal cannot inhibit oxygen consumption when the NNN'N'-tetramethyl-p-phenylenediamine by-pass is used. The inhibitory effect of methylglyoxal is identical on both ADP-stimulated and uncoupler-stimulated respiration. Lactaldehyde, a catabolite of methylglyoxal, can exert a protective effect on the inhibition of EAC-cell mitochondrial respiration by methylglyoxal. We suggest that methylglyoxal possibly inhibits the electron flow through complex I of the EAC-cell mitochondrial respiratory chain.

79 citations

Journal ArticleDOI
TL;DR: Study reported herein strongly suggest that the tumoricidal effect of MG is mediated at least in part through the inhibition of mitochondrial respiration and inactivation of GA3PD, and this enzyme may play an important role in the high glycolytic capacity of the malignant cells.
Abstract: The effect of methylglyoxal (MG) on the aerobic glycolysis of Ehrlich ascites carcinoma (EAC) cells has been tested. Methylglyoxal inhibited glucose utilization and glucose 6-phosphate (G6P) and L-lactate formation in whole EAC cells. Methylglyoxal strongly inactivated glyceraldehyde 3-phosphate dehydrogenase (GA3PD) of the malignant cells, whereas MG has little inactivating effect on this enzyme from several normal sources. Methylglyoxal also inactivated only the participate hexominase of the EAC cells, but this inactivation was less pronounced than the effect on GA3PD. Methylglyoxal has little inactivating effect on glucose 6-phosphate dehydrogenase (G6PD), and no effect on L-lactate dehydrogenase (LDH) of the malignant cells. Glucose-dependent L-lactic acid formation of EAC-cell-free homogenate was strongly inhibited by MG, but when GA3PD of normal cells was added to this homogenate, significant lactate formation was observed even in the presence of MG. Methylglyoxal also inhibited the respiration of EAC-cell mitochondria. Respiration of mitochondria isolated from liver and kidney of normal mice, however, remained unaffected. As a consequence of the inhibition of glycolysis and mitochondrial respiration, the ATp level of the EAC cells was drastically reduced. Studies reported herein strongly suggest that the tumoricidal effect of MG is mediated at least in part through the inhibition of mitochondrial respiration and inactivation of GA3PD, and this enzyme may play an important role in the high glycolytic capacity of the malignant cells.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.
Abstract: Heavy metal (HM) toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS) and methylglyoxal (MG), both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH), or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.

812 citations

Journal ArticleDOI
TL;DR: Investigation has brought new developments in the involvement of the glyoxalase in cell growth and vesicle mobilization, with increasing evidence of changes in the gly oxalase system during tumor growth and diabete mellitus, particularly relating to the development of associated clinical complications.
Abstract: The glyoxalase system is present in the cytosol of cells and cellular organelles, particularly mitochondria. It is found throughout biological life and is thought to be ubiquitous. The widespread distribution and presence of the glyoxalase system in living organisms suggests it fulfils a function of fundamental importance to biological life. Recent investigations have brought new developments in the involvement of the glyoxalase in cell growth and vesicle mobilization, with increasing evidence of changes in the glyoxalase system during tumor growth and diabete mellitus, particularly relating to the development of associated clinical complications.

780 citations

Journal ArticleDOI
TL;DR: This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body.
Abstract: This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ/cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.

773 citations

Journal ArticleDOI
TL;DR: The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden.
Abstract: Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

608 citations

Journal ArticleDOI
TL;DR: Levels of CML and CEL are proposed to provide an index of glyoxal and methylglyoxal concentrations in tissues, alterations in glutathione homoeostasis and dicarbonyl metabolism in disease, and sources of advanced glycation end-products in tissue proteins in aging and disease.
Abstract: Advanced glycation end-products and glycoxidation products, such as Nepsilon-(carboxymethyl)lysine (CML) and pentosidine, accumulate in long-lived tissue proteins with age and are implicated in the aging of tissue proteins and in the development of pathology in diabetes, atherosclerosis and other diseases. In this paper we describe a new advanced glycation end-product, Nepsilon-(carboxyethyl)lysine (CEL), which is formed during the reaction of methylglyoxal with lysine residues in model compounds and in the proteins RNase and collagen. CEL was also detected in human lens proteins at a concentration similar to that of CML, and increased with age in parallel with the concentration of CML. Although CEL was formed in highest yields during the reaction of methylglyoxal and triose phosphates with lysine and protein, it was also formed in reactions of pentoses, ascorbate and other sugars with lysine and RNase. We propose that levels of CML and CEL and their ratio to one another in tissue proteins and in urine will provide an index of glyoxal and methylglyoxal concentrations in tissues, alterations in glutathione homoeostasis and dicarbonyl metabolism in disease, and sources of advanced glycation end-products in tissue proteins in aging and disease.

606 citations