scispace - formally typeset
Search or ask a question
Author

Subhasree Mandal

Bio: Subhasree Mandal is an academic researcher from Google. The author has contributed to research in topics: Routing table & Equal-cost multi-path routing. The author has an hindex of 9, co-authored 19 publications receiving 2403 citations.

Papers
More filters
Proceedings ArticleDOI
27 Aug 2013
TL;DR: This work presents the design, implementation, and evaluation of B4, a private WAN connecting Google's data centers across the planet, using OpenFlow to control relatively simple switches built from merchant silicon.
Abstract: We present the design, implementation, and evaluation of B4, a private WAN connecting Google's data centers across the planet. B4 has a number of unique characteristics: i) massive bandwidth requirements deployed to a modest number of sites, ii) elastic traffic demand that seeks to maximize average bandwidth, and iii) full control over the edge servers and network, which enables rate limiting and demand measurement at the edge.These characteristics led to a Software Defined Networking architecture using OpenFlow to control relatively simple switches built from merchant silicon. B4's centralized traffic engineering service drives links to near 100% utilization, while splitting application flows among multiple paths to balance capacity against application priority/demands. We describe experience with three years of B4 production deployment, lessons learned, and areas for future work.

2,226 citations

Proceedings ArticleDOI
07 Aug 2018
TL;DR: This paper presents the five-year evolution of B4, Google's private software-defined WAN, and describes the techniques employed to incrementally move from offering best-effort content-copy services to carrier-grade availability, while concurrently scaling B4 to accommodate 100x more traffic.
Abstract: Private WANs are increasingly important to the operation of enterprises, telecoms, and cloud providers. For example, B4, Google's private software-defined WAN, is larger and growing faster than our connectivity to the public Internet. In this paper, we present the five-year evolution of B4. We describe the techniques we employed to incrementally move from offering best-effort content-copy services to carrier-grade availability, while concurrently scaling B4 to accommodate 100x more traffic. Our key challenge is balancing the tension introduced by hierarchy required for scalability, the partitioning required for availability, and the capacity asymmetry inherent to the construction and operation of any large-scale network. We discuss our approach to managing this tension: i) we design a custom hierarchical network topology for both horizontal and vertical software scaling, ii) we manage inherent capacity asymmetry in hierarchical topologies using a novel traffic engineering algorithm without packet encapsulation, and iii) we re-architect switch forwarding rules via two-stage matching/hashing to deal with asymmetric network failures at scale.

155 citations

Proceedings ArticleDOI
25 Mar 2012
TL;DR: A novel way to balance the throughput and fairness objectives with linear programming is proposed that allows the network operator to precisely control the trade-off by bounding the fairness degradation for each commodity compared to the max-min fair solution or the throughput degradationCompared to the optimal throughput.
Abstract: One of the goals of traffic engineering is to achieve a flexible trade-off between fairness and throughput so that users are satisfied with their bandwidth allocation and the network operator is satisfied with the utilization of network resources. In this paper, we propose a novel way to balance the throughput and fairness objectives with linear programming. It allows the network operator to precisely control the trade-off by bounding the fairness degradation for each commodity compared to the max-min fair solution or the throughput degradation compared to the optimal throughput. We also present improvements to a previous algorithm that achieves max-min fairness by solving a series of linear programs. We significantly reduce the number of steps needed when the access rate of commodities is limited. We extend the algorithm to two important practical use cases: importance weights and piece-wise linear utility functions for commodities. Our experiments on synthetic and real networks show that our algorithms achieve a significant speedup and provide practical insights on the trade-off between fairness and throughput.

96 citations

Patent
09 Oct 2012

56 citations

Patent
Leon Poutievski1, Subhasree Mandal1, Subbaiah Venkata1, Amit Gupta1, Joon Ong1 
04 Apr 2012

29 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 2015
TL;DR: This paper presents an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications, and presents the key building blocks of an SDN infrastructure using a bottom-up, layered approach.
Abstract: The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

3,589 citations

Proceedings ArticleDOI
27 Aug 2013
TL;DR: This work presents the design, implementation, and evaluation of B4, a private WAN connecting Google's data centers across the planet, using OpenFlow to control relatively simple switches built from merchant silicon.
Abstract: We present the design, implementation, and evaluation of B4, a private WAN connecting Google's data centers across the planet. B4 has a number of unique characteristics: i) massive bandwidth requirements deployed to a modest number of sites, ii) elastic traffic demand that seeks to maximize average bandwidth, and iii) full control over the edge servers and network, which enables rate limiting and demand measurement at the edge.These characteristics led to a Software Defined Networking architecture using OpenFlow to control relatively simple switches built from merchant silicon. B4's centralized traffic engineering service drives links to near 100% utilization, while splitting application flows among multiple paths to balance capacity against application priority/demands. We describe experience with three years of B4 production deployment, lessons learned, and areas for future work.

2,226 citations

Journal ArticleDOI
TL;DR: The SDN architecture and the OpenFlow standard in particular are presented, current alternatives for implementation and testing of SDN-based protocols and services are discussed, current and future SDN applications are examined, and promising research directions based on the SDN paradigm are explored.
Abstract: The idea of programmable networks has recently re-gained considerable momentum due to the emergence of the Software-Defined Networking (SDN) paradigm. SDN, often referred to as a ''radical new idea in networking'', promises to dramatically simplify network management and enable innovation through network programmability. This paper surveys the state-of-the-art in programmable networks with an emphasis on SDN. We provide a historic perspective of programmable networks from early ideas to recent developments. Then we present the SDN architecture and the OpenFlow standard in particular, discuss current alternatives for implementation and testing of SDN-based protocols and services, examine current and future SDN applications, and explore promising research directions based on the SDN paradigm.

2,013 citations

Posted Content
TL;DR: Software-Defined Networking (SDN) as discussed by the authors is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network.
Abstract: Software-Defined Networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound APIs, network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms -- with a focus on aspects such as resiliency, scalability, performance, security and dependability -- as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

1,968 citations

Proceedings ArticleDOI
27 Aug 2013
TL;DR: A novel technique is developed that leverages a small amount of scratch capacity on links to apply updates in a provably congestion-free manner, without making any assumptions about the order and timing of updates at individual switches.
Abstract: We present SWAN, a system that boosts the utilization of inter-datacenter networks by centrally controlling when and how much traffic each service sends and frequently re-configuring the network's data plane to match current traffic demand. But done simplistically, these re-configurations can also cause severe, transient congestion because different switches may apply updates at different times. We develop a novel technique that leverages a small amount of scratch capacity on links to apply updates in a provably congestion-free manner, without making any assumptions about the order and timing of updates at individual switches. Further, to scale to large networks in the face of limited forwarding table capacity, SWAN greedily selects a small set of entries that can best satisfy current demand. It updates this set without disrupting traffic by leveraging a small amount of scratch capacity in forwarding tables. Experiments using a testbed prototype and data-driven simulations of two production networks show that SWAN carries 60% more traffic than the current practice.

1,096 citations