scispace - formally typeset
Search or ask a question
Author

Subrahmanyan Chandrasekhar

Bio: Subrahmanyan Chandrasekhar is an academic researcher from University of Chicago. The author has contributed to research in topics: General relativity & Theory of relativity. The author has an hindex of 72, co-authored 347 publications receiving 51446 citations. Previous affiliations of Subrahmanyan Chandrasekhar include Presidency University, Kolkata & Los Alamos National Laboratory.


Papers
More filters
Book
01 Jan 1983
TL;DR: In a course of lectures on the underlying mathematical structures of classical gravitation theory given in 1978, Brandon Carter as discussed by the authors began with the statement ‘If I had been asked five years ago to prepare a course for recent developments in classical gravity theory, I would not have hesitated on the classical theory of black holes as a central topic of discussion. But I am grateful to them for their courtesy in assigning to me this privilege.
Abstract: In a course of lectures on the ‘underlying mathematical structures of classical gravitation theory’ given in 1978, Brandon Carter began with the statement ‘If I had been asked five years ago to prepare a course of lectures on recent developments in classical gravitation theory, I would not have hesitated on the classical theory of black holes as a central topic of discussion. However, the most important developments in gravitational theory during the last three or four years have not been in the classical domain at all…’ Carter is undoubtedly right in his assessment that the mathematical theory of black holes has not been in the mainstream of research in relativity since 1973. I therefore find it difficult to understand why the organizers of this meeting should have chosen precisely this topic for the opening talk of this meeting. But I am grateful to them for their courtesy in assigning to me this privilege.

4,165 citations


Cited by
More filters
Book
01 Jan 1948
TL;DR: The Mathematical Theory of Communication (MTOC) as discussed by the authors was originally published as a paper on communication theory more than fifty years ago and has since gone through four hardcover and sixteen paperback printings.
Abstract: Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

10,215 citations

Journal ArticleDOI
TL;DR: Fractional kinetic equations of the diffusion, diffusion-advection, and Fokker-Planck type are presented as a useful approach for the description of transport dynamics in complex systems which are governed by anomalous diffusion and non-exponential relaxation patterns.

7,412 citations

Journal ArticleDOI
TL;DR: An overview of the CHARMM program as it exists today is provided with an emphasis on developments since the publication of the original CHARMM article in 1983.
Abstract: CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecu- lar simulation program. It has been developed over the last three decades with a primary focus on molecules of bio- logical interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estima- tors, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numer- ous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.

7,035 citations