scispace - formally typeset
Search or ask a question
Author

Subrata Roy

Bio: Subrata Roy is an academic researcher from University of Florida. The author has contributed to research in topics: Plasma actuator & Dielectric barrier discharge. The author has an hindex of 33, co-authored 200 publications receiving 3916 citations. Previous affiliations of Subrata Roy include Rutgers University & Kettering University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a two-dimensional finite-element based micro-scale flow model is developed to efficiently predict the overall flow characteristics up to the transition regime for reasonably high Knudsen number flow inside microchannels and nanopores.
Abstract: Microchannel based systems have emerged as a critical design trend in development of precise control and maneuvering of small devices. In microelectronics, space propulsion and biomedical areas, these systems are especially useful. Nanoscale pores are recently becoming of great interest due to their beneficial drag and heat transfer properties. However it is difficult to predict the flow performance of these microsystems and nanosystems numerically since the standard assumptions of using Navier–Stokes equations break down at micrometer scales, while the computational times of applicable molecular-dynamics codes become exorbitant. A two-dimensional finite-element based microscale flow model is developed to efficiently predict the overall flow characteristics up to the transition regime for reasonably high Knudsen number flow inside microchannels and nanopores. Presented two-dimensional numerical results for Poiseuille flow of a simple fluid through the microchannel are comparable to the numerical and exper...

566 citations

Proceedings ArticleDOI
05 Jun 2006
TL;DR: In this paper, an exploratory numerical study of the control of transitional and turbulent separated flows by means of asymmetric dielectric-barrier discharge (DBD) actuators is presented.
Abstract: : An exploratory numerical study of the control of transitional and turbulent separated flows by means of asymmetric dielectric-barrier-discharge (DBD) actuators is presented. The flow fields are simulated employing an extensively validated high-fidelity Navier-Stokes solver which is augmented with both phenomenological and first-principles models representing the plasma-induced body forces imparted by the actuator on the fluid. Several applications are considered, including suppression of wing stall, control of boundary layer transition on a plate, control of laminar separation over a ramp, and turbulent separation over a wall-mounted hump. Effective suppression of stall over a NACA 0015 airfoil at moderate Reynolds numbers is demonstrated using either co-flow or counter-flow pulsed actuators with sufficiently high frequency. By contrast, continuous actuation (simulated by a steady body force in the phenomenological model) is found to provide little control of separation. For continuous actuator operation, the first-principles approach is needed in order to reproduce the benefits of the inherently unsteady force induced by the plasma actuator. The pulsed-modulated unsteady plasma force is found to be more effective than a monochromatic radio-frequency forcing. These results highlight the greater importance of transition and turbulence enhancement mechanisms rather than pure wall-jet momentum injection for the effective use of DBD devices. As a consequence, meaningful computations require the use of three-dimensional large-eddy simulation approaches capable of capturing the effects of unsteady forcing on the transitional/turbulent flow structure. For a laminar boundary layer developing along a flat plate, a counter-flow DBD actuator is shown to provide an effective on-demand tripping device.

153 citations

01 Jan 2010
TL;DR: The authors in this article found that only 23.5% of mothers initiated breastfeeding within the first hour after birth, 99.2% had ever breastfeeding, 89.8% were currently bottle-feeding, and 56.7% of those aged 6 to 9 months received complementary foods.
Abstract: Background: In India, poor feeding practices in early childhood contribute to the burden of malnutrition and infant and child mortality. Objective. To estimate infant and young child feeding indicators and determinants of selected feeding practices in India. Methods: The sample consisted of 20,108 children aged 0 to 23 months from the National Family Health Survey India 2005–06. Selected indicators were examined against a set of variables using univariate and multivariate analyses. Results: Only 23.5% of mothers initiated breastfeeding within the first hour after birth, 99.2% had ever breastfed their infant, 89.8% were currently breastfeeding, and 14.8% were currently bottle-feeding. Among infants under 6 months of age, 46.4% were exclusively breastfed, and 56.7% of those aged 6 to 9 months received complementary foods. The risk factors for not exclusively breastfeeding were higher household wealth index quintiles (OR for richest = 2.03), delivery in a health facility (OR = 1.35), and living in the Northern region. Higher numbers of antenatal care visits were associated with increased rates of exclusive breastfeeding (OR for ≥ 7 antenatal visits = 0.58). The rates of timely initiation of breastfeeding were higher among women who were better educated (OR for secondary education or above = 0.79), were working (OR = 0.79), made more antenatal clinic visits (OR for ≥ 7 antenatal visits = 0.48), and were exposed to the radio (OR = 0.76). The rates were lower in women who were delivered by cesarean section (OR = 2.52). The risk factors for bottle-feeding included cesarean delivery (OR = 1.44), higher household wealth index quintiles (OR = 3.06), working by the mother (OR=1.29), higher maternal education level (OR=1.32), urban residence (OR=1.46), and absence of postnatal examination (OR=1.24). The rates of timely complementary feeding were higher for mothers who had more antenatal visits (OR=0.57), and for those who watched television (OR=0.75). Conclusions: Revitalization of the Baby Friendly Hospital Initiative in health facilities is recommended. Targeted interventions may be necessary to improve infant feeding practices in mothers who reside in urban areas, are more educated, and are from wealthier households.

134 citations

Book ChapterDOI
06 Jan 2003
TL;DR: In this paper, a Spalart-Allmaras-based Detached-Eddy Simulation (DES) of the Ahmed reference car model with 25° and 35° slant angles using unstructured grids and the solver Cobalt is presented.
Abstract: This paper presents a Spalart-Allmaras based Detached-Eddy Simulation (DES) of the Ahmed reference car model with 25° and 35° slant angles using unstructured grids and the solverCobalt. Comparisons are made to experimental laser doppler velocity measurements as well as total and surface pressure integrated drag. The Reynolds number based on body length was 2.78 ×106, making the boundary layers approaching the slant fully turbulent. The flow over the base slant in the experiments is attached at 25° and separated at 35°. This causes a large drop in the drag with the increased slant angle as the vortices on the side of the slant are weakened due to the separation. These cases stress turbulence models due to the need to accurately predict the boundary layer separation over the slant as well as predict the pressures in the massively separated base region accurately. The DES results are compared to the experiments as well as the Spalart-Allmaras RANS model. DES is seen to predict separation at 25◦ slant angle, in contrast to the experiments. Drag is relatively close to the experiments, but the distribution of drag is more on the rear than on the slant due to the separation. At the 35 ° slant angle, DES is in good agreement to the experimental drag, with the correct distribution, while RANS over-predicts the drag.

108 citations

Journal ArticleDOI
TL;DR: In this article, a functional relationship between electrodynamic force and electrical and physical control parameters has been approximated and numerically tested for air and dielectric actuators, and the magnitude of approximated force increases with the fourth power of the amplitude of rf potential.
Abstract: A plasma actuator has been studied using a self-consistent multibody system of quiescent air, plasma, and dielectric. Equations governing the motion of charged and neutral species have been solved with Poisson’s equation. Based on first principles analysis, a functional relationship between electrodynamic force and electrical and physical control parameters has been approximated and numerically tested for air. The magnitude of approximated force increases with the fourth power of the amplitude of rf potential. Thus, the induced fluid velocity also increases. The induced velocity shows momentum injection very close to the actuator surface. There is, however, a very small increase in the induced velocity with the forcing frequency. For the specific range of operational parameters considered, the proposed force relation may help speed up the plasma actuator design process.

99 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: A review of the literature on active flow control with non-thermal actuators can be found in this paper, where the main advantages of such systems are their robustness, simplicity, low power consumption and ability for real-time control at high frequency.
Abstract: Active flow control is a topic in full expansion due to associated industrial applications of huge importance, particularly for aeronautics. Among all flow control methods, such as the use of mechanical flaps, wall synthetic jets or MEMS, plasma-based devices are very promising. The main advantages of such systems are their robustness, simplicity, low power consumption and ability for real-time control at high frequency. This paper is a review of the worldwide works on this topic, from its origin to the present. It is divided into two main parts. The first one is dedicated to the recent knowledge concerning the electric wind induced by surface non-thermal plasma actuators, acting in air at atmospheric pressure. Typically, it can reach 8 m s−1 at a distance of 0.5 mm from the wall. In the second part, works concerning active airflow control by these plasma actuators are presented. Very efficient results have been obtained for low-velocity subsonic airflows (typically U∞ ≤ 30 m s−1 and Reynolds number of a few 105), and promising results at higher velocities indicate that plasma actuators could be used in aeronautics.

1,519 citations

Journal ArticleDOI
TL;DR: This review discusses compelling examples, noting the visual and quantitative success of DES and its principal weakness is its response to ambiguous grids, in which the wall-parallel grid spacing is of the order of the boundary-layer thickness.
Abstract: Detached-eddy simulation (DES) was first proposed in 1997 and first used in 1999, so its full history can be surveyed. A DES community has formed, with adepts and critics, as well as new branches. The initial motivation of high–Reynolds number, massively separated flows remains, for which DES is convincingly more capable presently than either unsteady Reynolds-averaged Navier-Stokes (RANS) or large-eddy simulation (LES). This review discusses compelling examples, noting the visual and quantitative success of DES. Its principal weakness is its response to ambiguous grids, in which the wall-parallel grid spacing is of the order of the boundary-layer thickness. In some situations, DES on a given grid is then less accurate than RANS on the same grid or DES on a coarser grid. Partial remedies have been found, yet dealing with thickening boundary layers and shallow separation bubbles is a central challenge. The nonmonotonic response of DES to grid refinement is disturbing to most observers, as is the absence of...

1,194 citations

Journal ArticleDOI
TL;DR: A particular type of plasma actuator that has gained wide use is based on a single-dielectric barrier discharge (SDBD) mechanism that has desirable features for use in air at atmospheric pressures as mentioned in this paper.
Abstract: The term plasma actuator has now been a part of the fluid dynamics flow-control vernacular for more than a decade. A particular type of plasma actuator that has gained wide use is based on a single–dielectric barrier discharge (SDBD) mechanism that has desirable features for use in air at atmospheric pressures. For these actuators, the mechanism of flow control is through a generated body-force vector field that couples with the momentum in the external flow. The body force can be derived from first principles, and the effect of plasma actuators can be easily incorporated into flow solvers so that their placement and operation can be optimized. They have been used in a wide range of internal and external flow applications. Although initially considered useful only at low speeds, plasma actuators are effective in a number of applications at high subsonic, transonic, and supersonic Mach numbers, owing largely to more optimized actuator designs that were developed through better understanding and modeling of...

1,086 citations