scispace - formally typeset
Search or ask a question
Author

Sudeep Banjade

Bio: Sudeep Banjade is an academic researcher from Cornell University. The author has contributed to research in topics: ESCRT & Endosome. The author has an hindex of 8, co-authored 18 publications receiving 2584 citations. Previous affiliations of Sudeep Banjade include Johns Hopkins University School of Medicine & Howard Hughes Medical Institute.

Papers
More filters
Journal ArticleDOI
15 Mar 2012-Nature
TL;DR: Interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid–liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution.
Abstract: Cells are organized on length scales ranging from angstrom to micrometres. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.

1,816 citations

Journal ArticleDOI
29 Apr 2016-Science
TL;DR: It is demonstrated that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling and promote signaling outputs both in vitro and in human Jurkat T cells.
Abstract: Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.

853 citations

Journal ArticleDOI
16 Oct 2014-eLife
TL;DR: Biochemical reconstitution on supported lipid bilayers of protein clusters containing the adhesion receptor Nephrin and its cytoplasmic partners, Nck and N-WASP is reported, suggesting that clustering of regulatory factors could promote local actin assembly at membranes.
Abstract: The membrane that surrounds a cell is made up of a mixture of lipid molecules and proteins. Membrane proteins perform a wide range of roles, including transmitting signals into, and out of, cells and helping neighboring cells to stick together. To perform these tasks, these proteins commonly need to bind to other molecules—collectively known as ligands—that are found either inside or outside the cell. Membrane proteins are able to move around within the membrane, and in many systems, ligand binding causes the membrane proteins to cluster together. Although this clustering has been seen in many different systems, no general principles that describe how clustering occurs had been found. Now, Banjade and Rosen have constructed an artificial cell membrane to investigate the clustering of a membrane protein called Nephrin, which is essential for kidneys to function correctly. When it is activated, Nephrin interacts with protein ligands called Nck and N-WASP that are found inside cells and helps filaments of a protein called actin to form. These filaments perform a number of roles including enabling cells to adhere to each other and to move. In Banjade and Rosen's artificial system, when a critical concentration of ligands was exceeded, clusters of Nephrin, Nck and N-WASP suddenly formed. This suggests that the clusters form through a physical process known as ‘phase separation’. Banjade and Rosen found that this critical concentration depends on how strongly the proteins interact and the number of sites they possess to bind each other. Within the clusters, the three proteins formed large polymer chains. The clusters were mobile and, over time, small clusters coalesced into larger clusters. Even though the clusters persisted for hours, individual proteins did not stay in a given cluster for long and instead continuously exchanged back-and-forth between the cluster and its surroundings. When actin and another protein complex that interacts with N-WASP were added to the artificial membrane system, actin filaments began to form at the protein clusters. Banjade and Rosen suggest that such clusters act as ‘signaling zones’ that coordinate the construction of the actin filaments. Regions that are also found in many other signaling proteins mediate the interactions between Nephrin, Nck and N-WASP. Banjade and Rosen therefore suggest that phase separation and protein polymer formation could explain how many different types of membrane proteins form clusters.

387 citations

Journal ArticleDOI
11 Nov 2021-Science
TL;DR: The structures of many eukaryotic protein complexes are unknown, and there are likely many protein-protein interactions not yet identified as mentioned in this paper, but these structures play critical roles in biology.
Abstract: Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take ...

215 citations

Journal ArticleDOI
TL;DR: Crystal structures of the ErbBB4 kinase domain in active and lapatinib-inhibited forms are reported to demonstrate that key elements of kinase activation and inhibition are conserved among Erb B family members.

174 citations


Cited by
More filters
Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods.
Abstract: phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods.

4,380 citations

Journal ArticleDOI
TL;DR: This work has shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates and has proposed a physical framework for this organizing principle.
Abstract: In addition to membrane-bound organelles, eukaryotic cells feature various membraneless compartments, including the centrosome, the nucleolus and various granules. Many of these compartments form through liquid–liquid phase separation, and the principles, mechanisms and regulation of their assembly as well as their cellular functions are now beginning to emerge. Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.

3,294 citations

Journal ArticleDOI
22 Sep 2017-Science
TL;DR: The findings together suggest that several membrane-less organelles have been shown to exhibit a concentration threshold for assembly, a hallmark of phase separation, and represent liquid-phase condensates, which form via a biologically regulated (liquid-liquid) phase separation process.
Abstract: BACKGROUND Living cells contain distinct subcompartments to facilitate spatiotemporal regulation of biological reactions. In addition to canonical membrane-bound organelles such as secretory vesicles and endoplasmic reticulum, there are many organelles that do not have an enclosing membrane yet remain coherent structures that can compartmentalize and concentrate specific sets of molecules. Examples include assemblies in the nucleus such as the nucleolus, Cajal bodies, and nuclear speckles and also cytoplasmic structures such as stress granules, P-bodies, and germ granules. These structures play diverse roles in various biological processes and are also increasingly implicated in protein aggregation diseases. ADVANCES A number of studies have shown that membrane-less assemblies exhibit remarkable liquid-like features. As with conventional liquids, they typically adopt round morphologies and coalesce into a single droplet upon contact with one another and also wet intracellular surfaces such as the nuclear envelope. Moreover, component molecules exhibit dynamic exchange with the surrounding nucleoplasm and cytoplasm. These findings together suggest that these structures represent liquid-phase condensates, which form via a biologically regulated (liquid-liquid) phase separation process. Liquid phase condensation increasingly appears to be a fundamental mechanism for organizing intracellular space. Consistent with this concept, several membrane-less organelles have been shown to exhibit a concentration threshold for assembly, a hallmark of phase separation. At the molecular level, weak, transient interactions between molecules with multivalent domains or intrinsically disordered regions (IDRs) are a driving force for phase separation. In cells, condensation of liquid-phase assemblies can be regulated by active processes, including transcription and various posttranslational modifications. The simplest physical picture of a homogeneous liquid phase is often not enough to capture the full complexity of intracellular condensates, which frequently exhibit heterogeneous multilayered structures with partially solid-like characters. However, recent studies have shown that multiple distinct liquid phases can coexist and give rise to richly structured droplet architectures determined by the relative liquid surface tensions. Moreover, solid-like phases can emerge from metastable liquid condensates via multiple routes of potentially both kinetic and thermodynamic origins, which has important implications for the role of intracellular liquids in protein aggregation pathologies. OUTLOOK The list of intracellular assemblies driven by liquid phase condensation is growing rapidly, but our understanding of their sequence-encoded biological function and dysfunction lags behind. Moreover, unlike equilibrium phases of nonliving matter, living cells are far from equilibrium, with intracellular condensates subject to various posttranslational regulation and other adenosine triphosphate–dependent biological activity. Efforts using in vitro reconstitution, combined with traditional cell biology approaches and quantitative biophysical tools, are required to elucidate how such nonequilibrium features of living cells control intracellular phase behavior. The functional consequences of forming liquid condensates are likely multifaceted and may include facilitated reaction, sequestration of specific factors, and organization of associated intracellular structures. Liquid phase condensation is particularly interesting in the nucleus, given the growing interest in the impact of nuclear phase behavior on the flow of genetic information; nuclear condensates range from micrometer-sized bodies such as the nucleolus to submicrometer structures such as transcriptional assemblies, all of which directly interact with and regulate the genome. Deepening our understanding of these intracellular states of matter not only will shed light on the basic biology of cellular organization but also may enable therapeutic intervention in protein aggregation disease by targeting intracellular phase behavior.

2,432 citations

Journal ArticleDOI
TL;DR: The basic physical concepts necessary to understand the consequences of liquid-like states for biological functions are discussed.
Abstract: Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.

2,088 citations