scispace - formally typeset
Search or ask a question
Author

Sudhakar R. Bhusare

Other affiliations: Shivaji College, Karwar
Bio: Sudhakar R. Bhusare is an academic researcher from Hebrew University of Jerusalem. The author has contributed to research in topics: Enantioselective synthesis & Catalysis. The author has an hindex of 16, co-authored 87 publications receiving 1006 citations. Previous affiliations of Sudhakar R. Bhusare include Shivaji College, Karwar.


Papers
More filters
Journal ArticleDOI
TL;DR: The use of molecular iodine as the catalyst for a one-pot synthesis of quinoxaline derivatives at room temperature was reported in this article, where it was shown that molecular iodine can be used as a catalyst for any onepot synthesis.

249 citations

Journal ArticleDOI
TL;DR: All three molecules revealed antibacterial activity when tested against Micrococcus luteus and/or Pseudomonas aeruginosa, and the effect was even more pronounced when these molecules were tested in combination and caused lysis of these bacteria.
Abstract: Low molecular weight compounds were isolated by high-performance liquid chromatography from the maggot or haemolymph extracts of Lucilia sericata (Meigen) (Diptera: Calliphoridae). Using gas chromatography-mass spectrometry analysis, three compounds were obtained: p-hydroxybenzoic acid (molecular weight 138 Da), p-hydroxyphenylacetic acid (molecular weight 152 Da) and octahydro-dipyrrolo[1,2-a;1',2'-d] pyrazine-5,10-dione (molecular weight 194 Da), also known as the cyclic dimer of proline (or proline diketopiperazine or cyclo[Pro,Pro]). All three molecules revealed antibacterial activity when tested against Micrococcus luteus and/or Pseudomonas aeruginosa, and the effect was even more pronounced when these molecules were tested in combination and caused lysis of these bacteria.

108 citations

Journal ArticleDOI
TL;DR: In this paper, the thiols are oxidized to the corresponding disulfides with a mild base, anhydrous potassium phosphate, under ambient conditions in the presence of air.

77 citations

Journal ArticleDOI
TL;DR: In this paper, a new series of pyrazole, isoxazole, benzoxazepine, benzothiazepine and benzodiazepine derivatives were prepared by the multi-component cyclo-condensation reaction of 1-phenyl-3-(2-(tosyloxy)phenyl)propane-1,3-dione, N, N -dimethylformamide dimethyl acetal and hydrazine or hydroxylamine hydrochloride or 2-aminothiophenol or benzene-1-2-diamine

52 citations

Journal ArticleDOI
TL;DR: In vivo potent inhibitors based on the carbamoylphosphonic group as a putative zinc binding group are developed and are expected to be useful for the design of new selective inhibitors.
Abstract: Overactive matrix metalloproteinases (MMPs) are associated with a variety of disease states. Therefore, their inhibition is a highly desirable goal. Yet, more than a decade of worldwide activity has not produced even one clinically useful inhibitor. Because of the crucial role of zinc in the activity of the enzyme, the design of inhibitors is usually based upon a so-called zinc binding group (ZBG). Yet, many of the hitherto synthesized potent inhibitors failed clinically, presumably because they bind stronger to metals other than zinc. We have developed in vivo potent inhibitors based on the carbamoylphosphonic group as a putative ZBG. In this paper we report stability constants for Ca(II), Mg(II), Zn(II) and Cu(II) complexes of two potent, in vivo active, MMP inhibitors, cyclopentylcarbamoylphosphonic acid (1) and 2-( N, N-dimethylamino)ethylcarbamoylphosphonic acid (2). Precipitation prevented the determination of stability constants for iron(III) complexes of1 and2. For comparison with carbamoylphosphonates1 and2, we synthesized 2-cyclohexyl-1,1-difluoroethylphosphonic acid (3), which does not inhibit MMP, and determined the stability constants of its complexes with Mg(II), Ca(II) and Zn(II). Comparison with the values obtained from the complexes of1 and2 with those from3 indicates participation of the C=O group in the metal binding of the former compounds. The complex stability orders for both1 and2 are Ca(II) 8 the dimethylamino group of compound2 can also participate in the binding of the transition metals Cu and Zn. On the other hand, the amino group in carbamoylphosphonic acid2 lowers the stability of the complexes with metals favoring oxygen ligands (Ca, Mg and Fe) and increases the selectivity towards Zn. These results are helpful for rationalizing the results observed on our MMP inhibitors hitherto examined, and are expected to be useful for the design of new selective inhibitors.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: 1. Six-Membered Heterocycles with One Heteroatom 4155 7.6.1.
Abstract: 6.1. Oxadiazoles 4154 6.2. Diazaphospholes 4154 7. Six-Membered Heterocycles with One Heteroatom 4155 7.1. Pyridines 4155 7.2. Pyridinones 4155 7.3. Quinolines 4156 7.4. Quinolinones 4157 7.5. Isoquinolines 4157 7.6. Acridines 4158 7.7. Pyranones 4158 7.8. Flavones 4159 8. Six-Membered Heterocycles with Two Heteroatoms 4159 8.1. Pyridazinones 4159 8.2. Pyrimidines 4159 8.3. Pyrimidinones 4160 8.4. Quinazolines 4162 8.5. Quinazolinones 4162 8.6. Quinoxalines 4164 8.7. Quinoxalinediones 4165 8.8. Oxazines 4165 8.9. Oxazinones 4166 8.10. Thiazines 4166 9. Six-Membered Heterocycles with Three Heteroatoms 4166

549 citations

Journal ArticleDOI
TL;DR: The different synthesis methods and the pharmacological properties of pyrazole derivatives developed by many scientists around the globe are highlighted.
Abstract: Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.

520 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize strategies to synthesize pyrazole derivatives and demonstrate that this class of compounds can be targeted for the discovery of new drugs and can be readily prepared owing to recent advances in synthetic medicinal chemistry.
Abstract: Nitrogen-containing heterocyclic compounds and their derivatives have historically been invaluable as a source of therapeutic agents. Pyrazole, which has two nitrogen atoms and aromatic character, provides diverse functionality and stereochemical complexity in a five-membered ring structure. In the past decade, studies have reported a growing body of data on different pyrazole derivatives and their innumerable physiological and pharmacological activities. In part, such studies attempted to reveal the wide range of drug-like properties of pyrazole derivatives along with their structure–activity relationships in order to create opportunities to harness the full potentials of these compounds. Here, we summarize strategies to synthesize pyrazole derivatives and demonstrate that this class of compounds can be targeted for the discovery of new drugs and can be readily prepared owing to recent advances in synthetic medicinal chemistry.

460 citations

Journal ArticleDOI
TL;DR: The use of bromine and different bromo-organic compounds in organic synthesis is outlined and the scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc is described briefly.
Abstract: Bromination is one of the most important transformations in organic synthesis and can be carried out using bromine and many other bromo compounds. Use of molecular bromine in organic synthesis is well-known. However, due to the hazardous nature of bromine, enormous growth has been witnessed in the past several decades for the development of solid bromine carriers. This review outlines the use of bromine and different bromo-organic compounds in organic synthesis. The applications of bromine, a total of 107 bromo-organic compounds, 11 other brominating agents, and a few natural bromine sources were incorporated. The scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc. has been described briefly to highlight important aspects of the bromo-organic compounds in organic synthesis.

343 citations